勾股定理第一课时说课稿.doc_第1页
勾股定理第一课时说课稿.doc_第2页
勾股定理第一课时说课稿.doc_第3页
勾股定理第一课时说课稿.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

勾股定理第一课时说课稿 福清元樵中学 林华泉课题:“勾股定理”第一课时一、 教材分析(一)教材所处的地位这节课是九年制义务教育初级中学教材初二年级第三章第16节勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。(二)根据课程标准,本课的教学目标是:1、 能说出勾股定理的内容。2、 会初步运用勾股定理进行简单的计算和实际运用。3、 在探索勾股定理的过程中,让学生经历“观察猜想归纳验证”的数学思想,并体会数形结合和特殊到一般的思想方法。4、 通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。(三)本课的教学重点:勾股定理及及其应用本课的教学难点:用面积法(拼图法)证明勾股定理。二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分。学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。三、 教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高h=3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离x=2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?” 的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。(二)、勾股定理的探索,证明过程及命名 1、实验操作(探索-猜想): 教师用计算机演示(利用几何画板): (1)在ABC中,A,B,C所对边分别为a,b和 c, ACB 90,使ABC运动起来,但始终保持ACB90,如拖动 A点或B点改变a ,b的长度来拖动AB边绕任一点旋转ACB等边长的平方a2b2c23242522514416928.8511.6840.53bcCaBA(1)(2)在以上过程中,始终测算a2,b2,c2,各取以上典型运动的某一两个状态的测算值(约35个)列成表格,让学生观察三个数之间有何数量关系,得出猜想 (直角三角形两直角边的 平方和等于斜边的平方)(3)引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能. 接着教师向学生介绍“勾,股,弦”的含义.RtABC中,C 90AB2=AC2+BC2(或)2证明猜想目前世界上可以查到的证明勾股定理的方法有几百种,连美国第20届总统加菲尔德于1881年也提供了面积证法(见课本第107页图(4),而我国古代数学家利用割补、拼接图形计算面积的思路提供了很多种证明方法,下面咱们采纳其中一种(教师制作教具演示,见如图418)来进行证明(分析引导让学生写出证明步骤)b证法一、对于图(3)用四个全等的直角三角形、其直角边为a、b斜边为cbbbaaaaaaaaaaaabacccaaaaaaaaaaaaaaaaaaaaaaa拼成一个大正方形(边长为a+b)则:4c整理,得:(3)证法二、如图(4)是总统加菲尔德图(4)abccba根据梯形的面积公式可得:整理,得:3勾股定理的命名 我国称这个结论为“勾股定理”,西方称它为“毕达哥拉斯定理”,为什么呢? (1)介绍周髀算经中西周的商高(公元一千多年前)发现了勾三股四弦五 这个规律 (2)介绍西方毕达哥拉斯于公元前582493时期发现了勾股定理;(3)康熙数学专著勾股图解有五种求解直角三角形的方法,积求勾股法是其独创; (4)对比以上事实对学生进行爱国主义教育,激励他们奋发向上4、归纳勾股定理的几何语言:RtABC中,C 90AB2=AC2+BC2(或、)ABCD(三)、勾股定理的应用 已知直角三角形任两边求第三边例 1 在ABC中, AB=AC=10,BC=16,高为AD(1) 求AD的长;(2)求ABC的面积 (四)、问题解决:让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。DCBA(五)、练习 1、RtABC中,C 90(1)a=6,b=10。求b(2)c=25,b=15。求a2、如图、 等边ABC的边长是6(1)求高AD的长(2)求SABC(六)课堂小结:主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论