



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
讲义-平面向量与三角形四心的交汇一、四心的概念介绍(1)重心中线的交点:重心将中线长度分成2:1;(2)垂心高线的交点:高线与对应边垂直;(3)内心角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。二、四心与向量的结合(1)是的重心.证法1:设 是的重心.证法2:如图三点共线,且分为2:1是的重心(2)为的垂心.证明:如图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC, D、E是垂足.同理,为的垂心(3)设,是三角形的三条边长,O是ABC的内心为的内心.证明:分别为方向上的单位向量,平分,),令()化简得(4)为的外心。三、典型例题:例1:是平面上一定点,是平面上不共线的三个点,动点满足, ,则点的轨迹一定通过的( )A外心 B内心 C重心 D垂心例2:(03全国理4)是平面上一定点,是平面上不共线的三个点,动点满足, ,则点的轨迹一定通过的( )A外心 B内心 C重心 D垂心例3:1)是平面上一定点,是平面上不共线的三个点,动点满足, ,则点的轨迹一定通过的( )A外心 B内心 C重心 D垂心 2)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足, 则动点P的轨迹一定通过ABC的( )A. 重心 B. 垂心 C. 外心 D. 内心3)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足, , 则动点P的轨迹一定通过ABC的( )A. 重心 B. 垂心 C. 外心 D. 内心例4、已知向量满足条件,求证:是正三角形例5、的外接圆的圆心为O,两条边上的高的交点为H,则实数m = 例6、点O是三角形ABC所在平面内的一点,满足,则点O是的()A三个内角的角平分线的交点B三条边的垂直平分线的交点C三条中线的交点D三条高的交点例7在内求一点,使最小例8已知为所在平面内一点,满足,则为的心例9.已知O是ABC所在平面上的一点,若,则O点是ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心例10 已知O为ABC所在平面内一点,满足=,则O点是ABC的( )A. 垂心 B. 重心 C. 内心 D. 外心例11已知O是ABC所在平面上的一点,若= 0,则O点是ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心例12:已知O是ABC所在平面上的一点,若= 0,则O点是ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心例13:已知O是ABC所在平面上的一点,若(其中P是ABC所在平面内任意一点),则O点是ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心四、配套练习:1已知三个顶点及平面内一点,满足,若实数满足:,则的值为( )A2 B C3 D62若的外接圆的圆心为O,半径为1,则( )A B0 C1 D3点在内部且满足,则面积与凹四边形面积之比是( )A0 B C D4的外接圆的圆心为O,若,则是的( )A外心 B内心 C重心 D垂心 5是平面上一定点,是平面上不共线的三个点,若,则是的( )A外心 B内心 C重心 D垂心6的外接圆的圆心为O,两条边上的高的交点为H,则实数m = 7(06陕西)已知非零向量与满足(+)=0且= , 则ABC为( )A三边均不相等的三角形 B直角三角形C等腰非等边三角形 D等边三角形8已知三个顶点,若,则为( )A等腰三角形 B等腰直角三角形C直角三角形 D既非等腰又非直角三角形9.已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足, . 则P点的轨迹一定通过ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心10.已知O是ABC所在平面上的一点,若= 0, 则O点是ABC的( )A. 外心 B. 内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年数控切割工考试题及答案
- 古建筑方案设计投标
- 兽医专业的面试题及答案
- 2025年K2教育STEM课程实施现状与未来发展趋势:效果评估与启示报告
- DB65T 4454-2021 新疆褐牛生产性能测定技术规范
- 课时7.3 万有引力理论的成就-2024-2025学年高中物理同步练习分类专题教学设计(人教版2019必修第二册)
- 2025年制造业数据治理策略与智慧工厂建设报告
- 2025年新能源行业碳足迹评估与碳减排产业趋势预测报告
- 2025年高升专数学试题及答案
- 城乡交流遴选考试题及答案英语
- 钢铁冶金学(炼钢学)课件
- 历史虚无主义课件
- 微生物实验室风险评估报告
- 毕业论文范文3000字(精选十六篇)
- 2022年阜阳市工会系统招聘考试题库及答案解析
- 南京力学小学苏教版六年级上册数学《分数乘分数》公开课课件
- 陶艺制作过程介绍教学课件(共48张)
- 发动机构造第7章 发动机总体结构
- 电子材料来料检验标准
- 眼外伤病人护理
- 非标设备制作、安装方案
评论
0/150
提交评论