



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5讲 数学归纳法 基础题组练1用数学归纳法证明:首项是a1,公差是d的等差数列的前n项和公式是Snna1d时,假设当nk时,公式成立,则Sk()Aa1(k1)dBCka1d D(k1)a1d解析:选C.假设当nk时,公式成立,只需把公式中的n换成k即可,即Skka1d.2设f(x)是定义在正整数集上的函数,且f(x)满足:当f(k)k1成立时,总能推出f(k1)k2成立,那么下列命题总成立的是()A若f(1)2成立,则f(10)11成立B若f(3)4成立,则当k1时,均有f(k)k1成立C若f(2)3成立,则f(1)2成立D若f(4)5成立,则当k4时,均有f(k)k1成立解析:选D.当f(k)k1成立时,总能推出f(k1)k2成立,说明如果当kn时,f(n)n1成立,那么当kn1时,f(n1)n2也成立,所以如果当k4时,f(4)5成立,那么当k4时,f(k)k1也成立3用数学归纳法证明1,则当nk1时,左端应在nk的基础上加上()A. BC. D解析:选C.因为当nk时,左端1,当nk1时,左端1.所以,左端应在nk的基础上加上.4已知f(n)122232(2n)2,则f(k1)与f(k)的关系是()Af(k1)f(k)(2k1)2(2k2)2Bf(k1)f(k)(k1)2Cf(k1)f(k)(2k2)2Df(k1)f(k)(2k1)2解析:选A.f(k1)122232(2k)2(2k1)22(k1)2f(k)(2k1)2(2k2)2.5利用数学归纳法证明不等式1f(n)(n2,nN+)的过程中,由nk到nk1时,左边增加了()A1项 Bk项C2k1项 D2k项解析:选D.令不等式的左边为g(n),则g(k1)g(k)1,其项数为2k112k12k12k2k.故左边增加了2k项6用数学归纳法证明11)时,第一步应验证的不等式是_解析:由nN+,n1知,n取第一个值n02,当n2时,不等式为12.答案:1,假设nk时,不等式成立,则当nk1时,应推证的目标不等式是_答案:8用数学归纳法证明不等式(n2)的过程中,由nk推导nk1时,不等式的左边增加的式子是_解析:不等式的左边增加的式子是,故填.答案:9用数学归纳法证明等式12223242(1)n1n2(1)n1.证明:(1)当n1时,左边121,右边(1)01,左边右边,原等式成立(2)假设nk(k1,kN+)时等式成立,即有12223242(1)k1k2(1)k1.那么,当nk1时,12223242(1)k1k2(1)k(k1)2(1)k1(1)k(k1)2(1)kk2(k1)(1)k.所以当nk1时,等式也成立,由(1)(2)知,对任意nN+,都有12223242(1)n1n2(1)n1.10已知f(n)1,g(n),nN+.(1)当n1,2,3时,试比较f(n)与g(n)的大小;(2)猜想f(n)与g(n)的大小关系,并给出证明解:(1)当n1时,f(1)1,g(1)1,所以f(1)g(1);当n2时,f(2),g(2),所以f(2)g(2);当n3时,f(3),g(3),所以f(3)g(3)(2)由(1)猜想f(n)g(n),下面用数学归纳法给出证明当n1,2,3时,不等式显然成立假设当nk(k3,kN+)时不等式成立,即1.那么,当nk1时,f(k1)f(k).因为0,所以f(k1)g(k1)由可知,对一切nN+,都有f(n)g(n)成立综合题组练1已知整数p1,证明:当x1且x0时,(1x)p1px.证明:用数学归纳法证明当p2时,(1x)212xx212x,原不等式成立假设当pk(k2,kN+)时,不等式(1x)k1kx成立则当pk1时,(1x)k1(1x)(1x)k(1x)(1kx)1(k1)xkx21(k1)x.所以当pk1时,原不等式也成立综合可得,当x1且x0时,对一切整数p1,不等式(1x)p1px均成立2已知数列xn满足x1,且xn1(nN+)(1)用数学归纳法证明:0xn0,即xk10.又因为xk110,所以0xk11.综合可知0xn1.(2)由xn1可得1,即an12an1,所以an112(an1)令bnan1,则bn12bn,又b1a1111,所以bn是以1为首项,2为公比的等比数列,即bn2n1,所以an2n11.3将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),分别计算各组包含的正整数的和如下:S11,S2235,S345615,S47891034,S5111213141565,S6161718192021111,试猜测S1S3S5S2n1的结果,并用数学归纳法证明解:由题意知,当n1时,S1114;当n2时,S1S31624;当n3时,S1S3S58134;当n4时,S1S3S5S725644.猜想:S1S3S5S2n1n4.下面用数学归纳法证明:(1)当n1时,S1114,等式成立(2)假设当nk(kN+,k1)时等式成立,即S1S3S5S2k1k4,那么,当nk1时,S1S3S5S2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏宿迁豫智文化产业发展有限公司招聘工作人员拟聘考前自测高频考点模拟试题及答案详解(有一套)
- 2025年吉林工商学院公开招聘博士人才(3号)(24人)模拟试卷及答案详解(名师系列)
- 2025呼伦贝尔莫力达瓦达斡尔族自治旗卫生健康系统校园引进人才考前自测高频考点模拟试题含答案详解
- 2025湖南湘西自治州事业单位(医卫类)引进高层次急需紧缺人才考试考前自测高频考点模拟试题及完整答案详解一套
- 2025年上半年浙江湖州市交通投资集团有限公司招聘笔试题库历年考点版附带答案详解
- 2025广东佛山市顺德区公办中小学招聘教师92人(编制)考前自测高频考点模拟试题及答案详解1套
- 2025湖北咸宁市通城县城市发展建设投资(集团)有限公司招聘考前自测高频考点模拟试题有完整答案详解
- 2025年丽水庆元县卫生健康事业单位公开招聘专业技术人员11人考前自测高频考点模拟试题附答案详解
- 2025年河北唐山东方学校小学部招聘教师考前自测高频考点模拟试题及答案详解(名师系列)
- 2025北京市通州区马驹桥镇招考20人模拟试卷及答案详解(新)
- HG-T20678-2023《化工设备衬里钢壳设计标准》
- 间歇充气加压用于静脉血栓栓塞症预防的中国专家共识(2022年版)
- 长春南湖水质情况分析报告
- 外阴癌疾病演示课件
- 孙康映雪的故事
- (完整版)《供应链管理》历年自考判断题试题及答案
- 地质灾害治理工程单元、分部、分项工程划分(完整资料)
- MySQL数据库PPT完整全套教学课件
- 十四号线道岔监测系统的应用与分析
- GB/T 6441-1986企业职工伤亡事故分类
- 剖宫产术后护理常规
评论
0/150
提交评论