Kramers-Kronig关系_第1页
Kramers-Kronig关系_第2页
Kramers-Kronig关系_第3页
Kramers-Kronig关系_第4页
Kramers-Kronig关系_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 Lecture5 Thedielectricresponsefunctions Superpositionprinciple Thecomplexdielectricpermittivity Lossfactor ThecomplexdielectricpermittivityandthecomplexconductivityTheKramers Kronigrelations 2 PHENOMENOLOGICALTHEORYOFLINEARDIELECTRICINTIME DEPENDENTFIELDS Thedielectricresponsefunctions Superpositionprinciple Alineardielectricisadielectricforwhichthesuperpositionprincipleisvalid i e thepolarizationatatimetoduetoanaelectricfieldwithatime dependencethatcanbewrittenasasumE t E t isgivenbythesumofthepolarization sP to andP to duetothefieldsE t andE t separately Mostdielectricsarelinearwhenthefieldstrengthisnottoohigh Thesuperpositionprinciplemakesitpossibletodescribethepolarizationduetoanelectricfieldwitharbitrarytimedependence withthehelpofso calledresponsefunctions LetusconsiderthechangesofelectricfieldfromvalueE1toavalueE2atamomentt 5 1 3 whereSistheunit stepfunction 5 2 Thetime dependentfieldgivenby 5 1 canbeconsideredasthesuperpositionofastaticfield E2 andtime dependentfieldgivenby 5 3 Therefore wefindfromthesuperpositionprinciplethatthepolarizationattimest t duetothefieldgivenbyeqn 5 1 istheequilibriumpolarization E2forthestaticfieldE2andtheresponseofthefieldchangeE1 E2 seefig 5 1 Figure5 1 4 ForalineardielectricthisresponsewillbeproportionaltoE1 E2 sothatthetotalpolarizationisgivenby 5 4 Here t iscalledthestep responsefunctionordecayfunctionofthepolarization Forsimplicityletusrewritethisexpressioninmuchconvenientform 5 5 Att 0 t t in5 4 5 6 Inprinciple bothamonotonouslydecreasingandoscillatingbehaviorof t t arepossible Forhighvaluesoft PwillapproximatetheequilibriumvalueofthepolarizationconnectedwiththestaticfieldE2 Fromthisitfollowsthat 5 7 5 Letusconsiderthecaseofblockfunction Fort1 tt1itequaltozero Thisblockfunctioncanbeconsideredasthesuperpositionoftwofieldswithunit steptimedependence 5 8 Theresultingpolarizationfort t1canbeconsideredasthesuperpositionoftheeffectsofbothunit stepfunctions 5 9 AnarbitrarytimedependenceofEcanbeapproximatedbysplittingitupinanumberofblockfunctionsE Eiforti t t ti Theeffectofoneoftheseblockfunctionsisgivenby 5 9 Sincetheeffectsofallblockfunctionsmayagainbesuperimposed wehave 5 10 Inthelimitincreasingthenumberofblockfunctions 5 10 canbewrittenintheintegralform 6 5 11 where calledpulse responsefunctionofpolarization Theequation 5 11 givesthegeneralexpressionforthepolarizationinthecaseofatime dependentMaxwellfield LetusconsidernowthetimedependenceofthedielectricdisplacementDforatimedependentelectricfieldE 5 12 Forthelineardielectricsthedielectricdisplacementisalinearfunctionoftheelectricfieldstrengthandthepolarization andforthosedielectricswherethesuperpositionprincipleholdsforP itwillalsoholdforD Thus wecanwriteforDanalogouslyto 5 11 5 13 7 with Therelationbetween pand Disthefollowing 5 14 Takingthenegativederivativeof 5 14 wecangettherelationbetween pand D 5 15 Theunitstepfunctionin 5 14 impliesthatthereisaninstantaneousdecreaseofthefunction D t t fromthevalue D 0 1toalimitvaluegivenby 5 16 Incontrastthestep responsefunctionofthepolarizationcannotshow inprinciple suchaninstantaneousdecrease sinceanychangeofthepolarizationisconnectedwiththemotionofanykindofmicroscopicparticles thatcannotbeinfinitelyfast 8 However inthecaseoforientationpolarizationwecanneglectthetimenecessaryfortheintermolecularmotionsbywhichtheinducedpolarizationadaptsitselftothefieldstrength Inthisapproximation theinducedpolarizationisgivenatanytimet 5 17 where isthedielectricconstantofinducedpolarization Wecanrewrite 5 12 inthefollowingway 5 18 Itisthenusefultointroduceresponsefunctions porand pordescribingthebehavioroftheorientationpolarizationforatimedependentfieldandtoconsiderthererelationshipwith Dand Drespectively 5 19 5 20 9 From 5 19 thatnow 5 16 nolongerholds butshouldbechangedby 5 21 Fromcomparisonof 5 19 and 5 20 with 5 14 and 5 15 onecanobtaintheexpressionsfortheresponsefunctionsofthepolarizationinthecasethatthetimenecessaryfortheintramolecularmotionconnectedwiththeinducedpolarizationcanbeneglected 5 22 5 23 Aswasexpected theassumptionthattheinducedpolarizationfollowstheelectricfieldwithoutanydelayleadstotheoccurrenceofaunit stepfunctionintheexpressionforresponsefunctionoforientationpolarization From 5 16 itfollows 5 24 10 Thecomplexdielectricpermittivity LaplaceandFourierTransforms LetusconsiderthetimedependenceofthedielectricdisplacementDforatimedependentElectricfield ApplyingtotheleftandrightpartstheLaplacetransformandtakingintoaccountthetheoremofdeconvolutionwecanobtain 5 25 where 5 26 s i 0andwe llwriteinsteadofsinallLaplacetransformsi 11 Takingintoaccounttherelation 5 20 wecanrewrite 5 26 inthefollowingway Fromanothersidecomplexdielectricpermittivitycanbewritteninthefollowingform 5 27 5 28 Theequation 5 27 justifiestheuseofthesymbol forthedielectricconstantofinducedpolarization sinceforinfinitefrequencytheLaplacetransformvanishes andtheexpressionbecomesequalto Therealpartofcomplexdielectricpermittivity isassociatedwithrealpartofLaplacetransformoforientationpulse responsefunction 5 29 andtheimaginarypartofcomplexdielectricpermittivity isassociatedwiththenegativeimaginarypartoftheLaplacetransformoforientationpulse responsefunction 12 5 30 Letusnowreconsidertherelationshipbetweentimedependentdisplacementandharmonicelectricfield 5 31 We llrewriteinthiscasetherelation 5 25 inthefollowingform 5 32 thatcanbepresentedasfollows where and 5 33 13 Fromtheequation 5 32 itclearlyappearsthatthedielectricdisplacementcanbeconsideredasasuperpositionoftwoharmonicfieldswiththesamefrequency oneinphasewithelectricfieldandanotherwithaphasedifference Theamplitudesofthesefieldsaregivenby Eoand Eo respectively Calculationoftheenergychangesduringonecycleoftheelectricfieldshowsthatthefieldwithaphasedifferencewithrespecttotheelectricfieldgivesrisetoabsorptionofenergy Thetotalamountofworkexertedonthedielectricduringonecyclecanbecalculatedinthefollowingway 5 34 14 SincethefieldsEandDhavethesamevalueattheendofthecycleasatthebeginning thepotentialenergyofthedielectricisalsothesame Therefore thenetamountofworkexertedbythefieldonthedielectriccorrespondswithabsorptionofenergy Sincethedissipatedenergyisproportionalto thisquantityiscalledthelossfactor From 5 34 wefindtheaverageenergydissipationperunitoftime 5 35 where calledalossangle Accordingtothesecondlawofthermodynamics theamountofenergydissipatedpercyclemustbealwayspositiveorzero Itmeansthat 5 36 15 Thecomplexdielectricpermittivityandcomplexconductivity Inaharmonicfieldwithangularfrequency andamplitudeEothedissipationofenergyperunitoftimeinadielectricisgivenby 5 35 Thisequationholdsfordielectricsthatareidealisolators However mostofrealdielectricsshowacertainconductivity leading inafirstapproximation toanelectriccurrentdensityIinphasewiththeelectricfield 5 37 Theelectriccurrentcausesdissipationofenergy AccordingtoJoule slaw theamountofenergydissipatedduringthetimeintervaldtisgivenby 5 38 16 Foraharmonicfield theenergydissipationduringonecycleamountsto 5 39 Hence theaveragedissipationofenergyperunitoftimeduetoconditionis 5 40 Comparing 5 40 with 5 35 weseethatifwedetermine fromtheabsorptionofenergyinadielectricwealwaysobtainthesum 4 sothatwemustcorrectforthecontribution4 duetotheconductivityofthedielectric thereasonforthisistheequivalenceofthecurrentdensityandthetimederivativeofthedielectricdisplacementinMaxwell slaw 5 41 17 Aslongasthecurrentdensityisgivenby 5 38 thereisnoprobleminseparatingtheeffectsofconductionandpolarization since isaconstantthatcanbedeterminedfrommeasurementsinstaticfields However whenittakesacertaintimeforthecurrenttoreachitsequilibriumvalue therelationbetweenthefieldandthecurrentdensityisgivenbyapulse responsefunction I 5 42 Asforthepulse responsefunctionsofthepolarization pandofdielectricdisplacement D thepulse responsefunctionofthecurrentdensity Iisassociatedwithastep responsefunction I 5 43 Analogouslytotherelationbetweendisplacementandtheelectricfield 5 24 afterapplicationtotheleftandrightpartsof 5 42 theLaplacetransformandtakingintoaccountthetheoremofdeconvolutionwecanobtain 18 where 5 44 5 45 Thequantity givesthepartofthecurrentwhichisinphasewiththefieldandwhichthereforeleadstoabsorptionofenergy Hence thisquantityiscomparablewith Thequantity givesthepartofthecurrentwithaphasedifferenceofwithrespecttothefield Thus iscomparablewith ItispossibletocombinethedielectricdisplacementandtheelectriccurrentbydefiningageneralizeddielectricdisplacementD t 5 46 Toensureconvergenceoftheintegral itisnecessarythatE t approachalimitingvaluezerofort fastenough thiscorrespondswiththefactthatthefieldhasbeenswitchedonatsomemomentinthepast TherelationbetweenD t andelectricfieldcanbefoundbysubstituting 5 13 and 5 42 into 5 46 19 5 47 Using 5 43 andthefactthatthecurrentstep responsefunction I 0 1 wecanfind 5 48 where D t thepulse responsefunctionofthegeneralizeddielectricdisplacement isgivenby 5 49 Ifwe llagainapplyLaplacetransformtotheleftandtotherightpartsof 5 47 we llobtain 20 5 50 where 5 51 MakingtheLaplacetransformin 5 51 we llget 5 52 Splittingupintorealandnegativeimaginarypartwearriveat 5 53 5 54 21 TheKramers Kronigrelations TheKramers Kronigrelationsareultimatelyaconsequenceoftheprincipleofcausality thefactthatthedielectricresponsefunctionsatisfiesthecondition 5 55 Itmeansthatthereshouldbenoreactionbeforeaction Letuscon

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论