![[毕业设计精品论文]数形结合思想在解题中的应用 外文_第1页](http://file.renrendoc.com/FileRoot1/2017-12/7/d67778ac-6baa-4c69-83bb-8a1af4c99f3f/d67778ac-6baa-4c69-83bb-8a1af4c99f3f1.gif)
![[毕业设计精品论文]数形结合思想在解题中的应用 外文_第2页](http://file.renrendoc.com/FileRoot1/2017-12/7/d67778ac-6baa-4c69-83bb-8a1af4c99f3f/d67778ac-6baa-4c69-83bb-8a1af4c99f3f2.gif)
![[毕业设计精品论文]数形结合思想在解题中的应用 外文_第3页](http://file.renrendoc.com/FileRoot1/2017-12/7/d67778ac-6baa-4c69-83bb-8a1af4c99f3f/d67778ac-6baa-4c69-83bb-8a1af4c99f3f3.gif)
![[毕业设计精品论文]数形结合思想在解题中的应用 外文_第4页](http://file.renrendoc.com/FileRoot1/2017-12/7/d67778ac-6baa-4c69-83bb-8a1af4c99f3f/d67778ac-6baa-4c69-83bb-8a1af4c99f3f4.gif)
![[毕业设计精品论文]数形结合思想在解题中的应用 外文_第5页](http://file.renrendoc.com/FileRoot1/2017-12/7/d67778ac-6baa-4c69-83bb-8a1af4c99f3f/d67778ac-6baa-4c69-83bb-8a1af4c99f3f5.gif)
已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DEPARTMENTOFMATHEMATICSEDUCATIONJWILSON,EMT669THEPYTHAGOREANTHEOREMBYSTEPHANIEJMORRISTHEPYTHAGOREANTHEOREMWASONEOFTHEEARLIESTTHEOREMSKNOWNTOANCIENTCIVILIZATIONSTHISFAMOUSTHEOREMISNAMEDFORTHEGREEKMATHEMATICIANANDPHILOSOPHER,PYTHAGORASPYTHAGORASFOUNDEDTHEPYTHAGOREANSCHOOLOFMATHEMATICSINCORTONA,AGREEKSEAPORTINSOUTHERNITALYHEISCREDITEDWITHMANYCONTRIBUTIONSTOMATHEMATICSALTHOUGHSOMEOFTHEMMAYHAVEACTUALLYBEENTHEWORKOFHISSTUDENTSTHEPYTHAGOREANTHEOREMISPYTHAGORASMOSTFAMOUSMATHEMATICALCONTRIBUTIONACCORDINGTOLEGEND,PYTHAGORASWASSOHAPPYWHENHEDISCOVEREDTHETHEOREMTHATHEOFFEREDASACRIFICEOFOXENTHELATERDISCOVERYTHATTHESQUAREROOTOF2ISIRRATIONALANDTHEREFORE,CANNOTBEEXPRESSEDASARATIOOFTWOINTEGERS,GREATLYTROUBLEDPYTHAGORASANDHISFOLLOWERSTHEYWEREDEVOUTINTHEIRBELIEFTHATANYTWOLENGTHSWEREINTEGRALMULTIPLESOFSOMEUNITLENGTHMANYATTEMPTSWEREMADETOSUPPRESSTHEKNOWLEDGETHATTHESQUAREROOTOF2ISIRRATIONALITISEVENSAIDTHATTHEMANWHODIVULGEDTHESECRETWASDROWNEDATSEATHEPYTHAGOREANTHEOREMISASTATEMENTABOUTTRIANGLESCONTAININGARIGHTANGLETHEPYTHAGOREANTHEOREMSTATESTHAT“THEAREAOFTHESQUAREBUILTUPONTHEHYPOTENUSEOFARIGHTTRIANGLEISEQUALTOTHESUMOFTHEAREASOFTHESQUARESUPONTHEREMAININGSIDES“FIGURE1ACCORDINGTOTHEPYTHAGOREANTHEOREM,THESUMOFTHEAREASOFTHETWOREDSQUARES,SQUARESAANDB,ISEQUALTOTHEAREAOFTHEBLUESQUARE,SQUARECTHUS,THEPYTHAGOREANTHEOREMSTATEDALGEBRAICALLYISFORARIGHTTRIANGLEWITHSIDESOFLENGTHSA,B,ANDC,WHERECISTHELENGTHOFTHEHYPOTENUSEALTHOUGHPYTHAGORASISCREDITEDWITHTHEFAMOUSTHEOREM,ITISLIKELYTHATTHEBABYLONIANSKNEWTHERESULTFORCERTAINSPECIFICTRIANGLESATLEASTAMILLENNIUMEARLIERTHANPYTHAGORASITISNOTKNOWNHOWTHEGREEKSORIGINALLYDEMONSTRATEDTHEPROOFOFTHEPYTHAGOREANTHEOREMIFTHEMETHODSOFBOOKIIOFEUCLIDSELEMENTSWEREUSED,ITISLIKELYTHATITWASADISSECTIONTYPEOFPROOFSIMILARTOTHEFOLLOWING“ALARGESQUAREOFSIDEABISDIVIDEDINTOTWOSMALLERSQUARESOFSIDESAANDBRESPECTIVELY,ANDTWOEQUALRECTANGLESWITHSIDESAANDBEACHOFTHESETWORECTANGLESCANBESPLITINTOTWOEQUALRIGHTTRIANGLESBYDRAWINGTHEDIAGONALCTHEFOURTRIANGLESCANBEARRANGEDWITHINANOTHERSQUAREOFSIDEABASSHOWNINTHEFIGURESTHEAREAOFTHESQUARECANBESHOWNINTWODIFFERENTWAYS1ASTHESUMOFTHEAREAOFTHETWORECTANGLESANDTHESQUARES2ASTHESUMOFTHEAREASOFASQUAREANDTHEFOURTRIANGLESNOW,SETTINGTHETWORIGHTHANDSIDEEXPRESSIONSINTHESEEQUATIONSEQUAL,GIVESTHEREFORE,THESQUAREONCISEQUALTOTHESUMOFTHESQUARESONAANDBBURTON1991THEREAREMANYOTHERPROOFSOFTHEPYTHAGOREANTHEOREMONECAMEFROMTHECONTEMPORARYCHINESECIVILIZATIONFOUNDINTHEOLDESTEXTANTCHINESETEXTCONTAININGFORMALMATHEMATICALTHEORIES,THEARITHMETICCLASSICOFTHEGNOMANANDTHECIRCULARPATHSOFHEAVENTHEPROOFOFTHEPYTHAGOREANTHEOREMTHATWASINSPIREDBYAFIGUREINTHISBOOKWASINCLUDEDINTHEBOOKVIJAGANITA,ROOTCALCULATIONS,BYTHEHINDUMATHEMATICIANBHASKARABHASKARASONLYEXPLANATIONOFHISPROOFWAS,SIMPLY,“BEHOLD“THESEPROOFSANDTHEGEOMETRICALDISCOVERYSURROUNDINGTHEPYTHAGOREANTHEOREMLEDTOONEOFTHEEARLIESTPROBLEMSINTHETHEORYOFNUMBERSKNOWNASTHEPYTHGOREANPROBLEMTHEPYTHAGOREANPROBLEMFINDALLRIGHTTRIANGLESWHOSESIDESAREOFINTEGRALLENGTH,THUSFINDINGALLSOLUTIONSINTHEPOSITIVEINTEGERSOFTHEPYTHAGOREANEQUATIONTHETHREEINTEGERSX,Y,ZTHATSATISFYTHISEQUATIONISCALLEDAPYTHAGOREANTRIPLESOMEPYTHAGOREANTRIPLESXYZ345512137242594041116061THEFORMULATHATWILLGENERATEALLPYTHAGOREANTRIPLESFIRSTAPPEAREDINBOOKXOFEUCLIDSELEMENTSWHERENANDMAREPOSITIVEINTEGERSOFOPPOSITEPARITYANDMNINHISBOOKARITHMETICA,DIOPHANTUSCONFIRMEDTHATHECOULDGETRIGHTTRIANGLESUSINGTHISFORMULAALTHOUGHHEARRIVEDATITUNDERADIFFERENTLINEOFREASONINGTHEPYTHAGOREANTHEOREMCANBEINTRODUCEDTOSTUDENTSDURINGTHEMIDDLESCHOOLYEARSTHISTHEOREMBECOMESINCREASINGLYIMPORTANTDURINGTHEHIGHSCHOOLYEARSITISNOTENOUGHTOMERELYSTATETHEALGEBRAICFORMULAFORTHEPYTHAGOREANTHEOREMSTUDENTSNEEDTOSEETHEGEOMETRICCONNECTIONSASWELLTHETEACHINGANDLEARNINGOFTHEPYTHAGOREANTHEOREMCANBEENRICHEDANDENHANCEDTHROUGHTHEUSEOFDOTPAPER,GEOBOARDS,PAPERFOLDING,ANDCOMPUTERTECHNOLOGY,ASWELLASMANYOTHERINSTRUCTIONALMATERIALSTHROUGHTHEUSEOFMANIPULATIVESANDOTHEREDUCATIONALRESOURCES,THEPYTHAGOREANTHEOREMCANMEANMUCHMORETOSTUDENTSTHANJUSTANDPLUGGINGNUMBERSINTOTHEFORMULATHEFOLLOWINGISAVARIETYOFPROOFSOFTHEPYTHAGOREANTHEOREMINCLUDINGONEBYEUCLIDTHESEPROOFS,ALONGWITHMANIPULATIVESANDTECHNOLOGY,CANGREATLYIMPROVESTUDENTSUNDERSTANDINGOFTHEPYTHAGOREANTHEOREMTHEFOLLOWINGISASUMMATIONOFTHEPROOFBYEUCLID,ONEOFTHEMOSTFAMOUSMATHEMATICIANSTHISPROOFCANBEFOUNDINBOOKIOFEUCLIDSELEMENTSPROPOSITIONINRIGHTANGLEDTRIANGLESTHESQUAREONTHEHYPOTENUSEISEQUALTOTHESUMOFTHESQUARESONTHELEGSFIGURE2EUCLIDBEGANWITHTHEPYTHAGOREANCONFIGURATIONSHOWNABOVEINFIGURE2THEN,HECONSTRUCTEDAPERPENDICULARLINEFROMCTOTHESEGMENTDJONTHESQUAREONTHEHYPOTENUSETHEPOINTSHANDGARETHEINTERSECTIONSOFTHISPERPENDICULARWITHTHESIDESOFTHESQUAREONTHEHYPOTENUSEITLIESALONGTHEALTITUDETOTHERIGHTTRIANGLEABCSEEFIGURE3FIGURE3NEXT,EUCLIDSHOWEDTHATTHEAREAOFRECTANGLEHBDGISEQUALTOTHEAREAOFSQUAREONBCANDTHATTHEAREOFTHERECTANGLEHAJGISEQUALTOTHEAREAOFTHESQUAREONACHEPROVEDTHESEEQUALITIESUSINGTHECONCEPTOFSIMILARITYTRIANGLESABC,AHC,ANDCHBARESIMILARTHEAREAOFRECTANGLEHAJGISHAAJANDSINCEAJAB,THEAREAISALSOHAABTHESIMILARITYOFTRIANGLESABCANDAHCMEANSANDTHEREFOREOR,ASTOBEPROVED,THEAREAOFTHERECTANGLEHAJGISTHESAMEASTHEAREAOFTHESQUAREONSIDEACINTHESAMEWAY,TRIANGLESABCANDCHGARESIMILARSOANDSINCETHESUMOFTHEAREASOFTHETWORECTANGLESISTHEAREAOFTHESQUAREONTHEHYPOTENUSE,THISCOMPLETESTHEPROOFEUCLIDWASANXIOUSTOPLACETHISRESULTINHISWORKASSOONASPOSSIBLEHOWEVER,SINCEHISWORKONSIMILARITYWASNOTTOBEUNTILBOOKSVANDVI,ITWASNECESSARYFORHIMTOCOMEUPWITHANOTHERWAYTOPROVETHEPYTHAGOREANTHEOREMTHUS,HEUSEDTHERESULTTHATPARALLELOGRAMSAREDOUBLETHETRIANGLESWITHTHESAMEBASEANDBETWEENTHESAMEPARALLELSDRAWCJANDBETHEAREAOFTHERECTANGLEAHGJISDOUBLETHEAREAOFTRIANGLEJAC,ANDTHEAREAOFSQUAREACLEISDOUBLETRIANGLEBAETHETWOTRIANGLESARECONGRUENTBYSASTHESAMERESULTFOLLOWSINASIMILARMANNERFORTHEOTHERRECTANGLEANDSQUAREKATZ,1993CLICKHEREFORAGSPANIMATIONTOILLUSTRATETHISPROOFTHENEXTTHREEPROOFSAREMOREEASILYSEENPROOFSOFTHEPYTHAGOREANTHEOREMANDWOULDBEIDEALFORHIGHSCHOOLMATHEMATICSSTUDENTSINFACT,THESEAREPROOFSTHATSTUDENTSCOULDBEABLETOCONSTRUCTTHEMSELVESATSOMEPOINTTHEFIRSTPROOFBEGINSWITHARECTANGLEDIVIDEDUPINTOTHREETRIANGLES,EACHOFWHICHCONTAINSARIGHTANGLETHISPROOFCANBESEENTHROUGHTHEUSEOFCOMPUTERTECHNOLOGY,ORWITHSOMETHINGASSIMPLEASA3X5INDEXCARDCUTUPINTORIGHTTRIANGLESFIGURE4FIGURE5ITCANBESEENTHATTRIANGLES2INGREENAND1INRED,WILLCOMPLETELYOVERLAPTRIANGLE3INBLUENOW,WECANGIVEAPROOFOFTHEPYTHAGOREANTHEOREMUSINGTHESESAMETRIANGLESPROOFICOMPARETRIANGLES1AND3FIGURE6ANGLESEANDD,RESPECTIVELY,ARETHERIGHTANGLESINTHESETRIANGLESBYCOMPARINGTHEIRSIMILARITIES,WEHAVEANDFROMFIGURE6,BCADSO,BYCROSSMULTIPLICATION,WEGETIICOMPARETRIANGLES2AND3FIGURE7BYCOMPARINGTHESIMILARITIESOFTRIANGLES2AND3WEGETFROMFIGURE4,ABCDBYSUBSTITUTION,CROSSMULTIPLICATIONGIVESFINALLY,BYADDINGEQUATIONS1AND2,WEGETFROMTRIANGLE3,ACAEECSOFIGURE8WEHAVEPROVEDTHEPYTHAGOREANTHEOREMTHENEXTPROOFISANOTHERPROOFOFTHEPYTHAGOREANTHEOREMTHATBEGINSWITHARECTANGLEITBEGINSBYCONSTRUCTINGRECTANGLECADEWITHBADANEXT,WECONSTRUCTTHEANGLEBISECTOROFBADANDLETITINTERSECTEDATPOINTFTHUS,BAFISCONGRUENTTODAF,AFAF,ANDBADASO,BYSAS,TRIANGLEBAFTRIANGLEDAFSINCEADFISARIGHTANGLE,ABFISALSOARIGHTANGLEFIGURE9NEXT,SINCEMEBFMABCMABF180DEGREESANDMABF90DEGREES,EBFANDABCARECOMPLEMENTARYTHUS,MEBFMABC90DEGREESWEALSOKNOWTHATMBACMABCMACB180DEGREESSINCEMACB90DEGREES,MBACMABC90DEGREESTHEREFORE,MEBFMABCMBACMABCANDMBACMEBFBYTHEAASIMILARITYTHEOREM,TRIANGLEEBFISSIMILARTOTRIANGLECABNOW,LETKBETHESIMILARITYRATIOBETWEENTRIANGLESEBFANDCABFIGURE10THUS,TRIANGLEEBFHASSIDESWITHLENGTHSKA,KB,ANDKCSINCEFBFD,FDKCALSO,SINCETHEOPPOSITESIDESOFARECTANGLEARECONGRUENT,BKAKCANDCAKBBYSOLVINGFORK,WEHAVEANDBKACCAKB()THUS,BYCROSSMULTIPLICATION,THEREFORE,ANDWEHAVECOMPLETEDTHEPROOFTHENEXTPROOFOFTHEPYTHAGOREANTHEOREMTHATWILLBEPRESENTEDISONETHATBEGINSWITHARIGHTTRIANGLEINTHENEXTFIGURE,TRIANGLEABCISARIGHTTRIANGLEITSRIGHTANGLEISANGLECFIGURE11NEXT,DRAWCDPERPENDICULARTOABASSHOWNINTHENEXTFIGUREFIGURE12TRIANGLE1COMPARETRIANGLES1AND3TRIANGLE1GREENISTHERIGHTTRIANGLETHATWEBEGANWITHPRIORTOCONSTRUCTINGCDTRIANGLE3REDISONEOFTHETWOTRIANGLESFORMEDBYTHECONSTRUCTIONOFCDFIGURE13TRIANGLE1TRIANGLE3BYCOMPARINGTHESETWOTRIANGLES,WECANSEETHATCOMPARETRIANGLES1AND2TRIANGLE1GREENISTHESAMEASABOVETRIANGLE2BLUEISTHEOTHERTRIANGLEFORMEDBYCONSTRUCTINGCDITSRIGHTANGLEISANGLEDFIGURE14TRIANGLE1TRIANGLE2BYCOMPARINGTHESETWOTRIANGLES,WESEETHATBYADDINGEQUATIONS3AND4WEGETFROMFIGURES11AND12,WITHCD,WEHAVETHATPQCBYSUBSTITUTION,WEGETTHENEXTPROOFOFTHEPYTHAGOREANTHEOREMTHATWILLBEPRESENTEDISONEINWHICHATRAPEZOIDWILLBEUSEDFIGURE15BYTHECONSTRUCTIONTHATWASUSEDTOFORMTHISTRAPEZOID,ALL6OFTHETRIANGLESCONTAINEDINTHISTRAPEZOIDARERIGHTTRIANGLESTHUS,AREAOFTRAPEZOIDTHESUMOFTHEAREASOFTHE6TRIANGLESANDBYUSINGTHERESPECTIVEFORMULASFORAREA,WEGETWEHAVECOMPLETEDTHEPROOFOFTHEPYTHAGOREANTHEOREMUSINGTHETRAPEZOIDTHENEXTPROOFOFTHEPYTHAGOREANTHEOREMTHATIWILLPRESENTISONETHATCANBETAUGHTANDPROVEDUSINGPUZZLESTHESEPUZZLESCANBECONSTRUCTEDUSINGTHEPYTHAGOREANCONFIGURATIONANDTHEN,DISSECTINGITINTODIFFERENTSHAPESBEFORETHEPROOFISPRESENTED,ITISIMPORTANTTHATTHENEXTFIGUREISEXPLOREDSINCEITDIRECTLYRELATESTOTHEPROOFFIGURE16INTHISPYTHAGOREANCONFIGURATION,THESQUAREONTHEHYPOTENUSEHASBEENDIVIDEDINTO4RIGHTTRIANGLESAND1SQUARE,MNPQ,INTHECENTERSINCEMNANAMABEACHSIDEOFSQUAREMNPQHASLENGTHOFABTHISGIVESTHEFOLLOWINGAREAOFSQUAREONTHEHYPOTENUSESUMOFTHEAREASOFTHE4TRIANGLESANDTHEAREAOFSQUAREMNPQASMENTIONEDABOVE,THISPROOFOFTHEPYTHAGOREANTHEOREMCANBEFURTHEREXPLOREDANDPROVEDUSINGPUZZLESTHATAREMADEFROMTHEPYTHAGOREANCONFIGURATIONSTUDENTSCANMAKETHESEPUZZLESANDTHENUSETHEPIECESFROMSQUARESONTHELEGSOFTHERIGHTTRIANGLETOCOVERTHESQUAREONTHEHYPOTENUSETHISCANBEAGREATCONNECTIONBECAUSEITISA“HANDSON“ACTIVITYSTUDENTSCANTHENUSETHEPUZZLETOPROVETHEPYTHAGOREANTHEOREMONTHEIROWNFIGURE17TOCREATETHISPUZZLE,COPYTHESQUAREONBCTWICE,ONCEPLACEDBELOWTHESQUAREONACANDONCETOTHERIGHTOFTHESQUAREONACASSHOWNINFIGURE17PROOFUSINGFIGURE17TRIANGLECDEISCONGRUENTTOTRIANGLEACBBYLEGLEGINTRIANGLEACB,MACB90ANDTHESIDESHAVELENGTHSA,B,CINTRIANGLECDE,MCDE90ANDTHESIDESHAVELENGTHSA,B,CTRIANGLEEGHISCONGRUENTTOTRIANGLEACBBYLEGLEGTHEMEGH90ANDITSSIDESHAVELENGTHSAANDCSINCEEFBAAI,EGBTHUSTHEDIAGONALSCEANDEHAREBOTHEQUALTOCNOTEPIECES4AND7,ANDPIECES5AND6ARENOTSEPARATEDBYCALCULATINGTHEAREAOFEACHPIECE,ITCANBESHOWNTHATAREA1AREA2AREA3ARE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年淮北市法院系统招聘真题
- 2025年陆丰市属事业单位考试试卷
- 2025年潍坊职业学院高层次高技能人才引进(招聘)(10人)考前自测高频考点模拟试题及完整答案详解
- 2025年西北(西安)电能成套设备有限公司招聘(4人)模拟试卷及完整答案详解1套
- 2025江苏泰州市姜堰中医院招聘卫生专业技术人员30人考前自测高频考点模拟试题及答案详解(有一套)
- 2025内蒙古工业大学事业编制人员招聘20人考前自测高频考点模拟试题及完整答案详解
- 2025福建福州大学先进制造学院(晋江市福大科教园区发展中心)招聘高层次人才13人模拟试卷完整答案详解
- 2025年潍坊市寒亭区人民检察院公开招聘工作人员模拟试卷及答案详解(历年真题)
- 2025江苏南通市通州区机关车辆管理中心驾驶员招聘2人模拟试卷及答案详解(考点梳理)
- 2025广西广西民族大学招聘1人(国际合作与交流处外事科工作人员)模拟试卷(含答案详解)
- 2025小学道德与法治开学第一课(思想政治理论教育课)
- 公关经理培训课程
- 异博定治疗方案
- 申请法院司法赔偿申请书
- 锻造操作机安全检查表模版
- 400字作文稿纸可修改模板
- 迪尔凯姆社会学主义的巨擎汇总课件
- 防排烟系统施工安装全程验收记录
- 家庭经济困难学生认定申请表
- 阀门安装及阀门安装施工方案
- YY 9706.240-2021医用电气设备第2-40部分:肌电及诱发反应设备的基本安全和基本性能专用要求
评论
0/150
提交评论