已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DEPARTMENTOFMATHEMATICSEDUCATIONJWILSON,EMT669THEPYTHAGOREANTHEOREMBYSTEPHANIEJMORRISTHEPYTHAGOREANTHEOREMWASONEOFTHEEARLIESTTHEOREMSKNOWNTOANCIENTCIVILIZATIONSTHISFAMOUSTHEOREMISNAMEDFORTHEGREEKMATHEMATICIANANDPHILOSOPHER,PYTHAGORASPYTHAGORASFOUNDEDTHEPYTHAGOREANSCHOOLOFMATHEMATICSINCORTONA,AGREEKSEAPORTINSOUTHERNITALYHEISCREDITEDWITHMANYCONTRIBUTIONSTOMATHEMATICSALTHOUGHSOMEOFTHEMMAYHAVEACTUALLYBEENTHEWORKOFHISSTUDENTSTHEPYTHAGOREANTHEOREMISPYTHAGORASMOSTFAMOUSMATHEMATICALCONTRIBUTIONACCORDINGTOLEGEND,PYTHAGORASWASSOHAPPYWHENHEDISCOVEREDTHETHEOREMTHATHEOFFEREDASACRIFICEOFOXENTHELATERDISCOVERYTHATTHESQUAREROOTOF2ISIRRATIONALANDTHEREFORE,CANNOTBEEXPRESSEDASARATIOOFTWOINTEGERS,GREATLYTROUBLEDPYTHAGORASANDHISFOLLOWERSTHEYWEREDEVOUTINTHEIRBELIEFTHATANYTWOLENGTHSWEREINTEGRALMULTIPLESOFSOMEUNITLENGTHMANYATTEMPTSWEREMADETOSUPPRESSTHEKNOWLEDGETHATTHESQUAREROOTOF2ISIRRATIONALITISEVENSAIDTHATTHEMANWHODIVULGEDTHESECRETWASDROWNEDATSEATHEPYTHAGOREANTHEOREMISASTATEMENTABOUTTRIANGLESCONTAININGARIGHTANGLETHEPYTHAGOREANTHEOREMSTATESTHAT“THEAREAOFTHESQUAREBUILTUPONTHEHYPOTENUSEOFARIGHTTRIANGLEISEQUALTOTHESUMOFTHEAREASOFTHESQUARESUPONTHEREMAININGSIDES“FIGURE1ACCORDINGTOTHEPYTHAGOREANTHEOREM,THESUMOFTHEAREASOFTHETWOREDSQUARES,SQUARESAANDB,ISEQUALTOTHEAREAOFTHEBLUESQUARE,SQUARECTHUS,THEPYTHAGOREANTHEOREMSTATEDALGEBRAICALLYISFORARIGHTTRIANGLEWITHSIDESOFLENGTHSA,B,ANDC,WHERECISTHELENGTHOFTHEHYPOTENUSEALTHOUGHPYTHAGORASISCREDITEDWITHTHEFAMOUSTHEOREM,ITISLIKELYTHATTHEBABYLONIANSKNEWTHERESULTFORCERTAINSPECIFICTRIANGLESATLEASTAMILLENNIUMEARLIERTHANPYTHAGORASITISNOTKNOWNHOWTHEGREEKSORIGINALLYDEMONSTRATEDTHEPROOFOFTHEPYTHAGOREANTHEOREMIFTHEMETHODSOFBOOKIIOFEUCLIDSELEMENTSWEREUSED,ITISLIKELYTHATITWASADISSECTIONTYPEOFPROOFSIMILARTOTHEFOLLOWING“ALARGESQUAREOFSIDEABISDIVIDEDINTOTWOSMALLERSQUARESOFSIDESAANDBRESPECTIVELY,ANDTWOEQUALRECTANGLESWITHSIDESAANDBEACHOFTHESETWORECTANGLESCANBESPLITINTOTWOEQUALRIGHTTRIANGLESBYDRAWINGTHEDIAGONALCTHEFOURTRIANGLESCANBEARRANGEDWITHINANOTHERSQUAREOFSIDEABASSHOWNINTHEFIGURESTHEAREAOFTHESQUARECANBESHOWNINTWODIFFERENTWAYS1ASTHESUMOFTHEAREAOFTHETWORECTANGLESANDTHESQUARES2ASTHESUMOFTHEAREASOFASQUAREANDTHEFOURTRIANGLESNOW,SETTINGTHETWORIGHTHANDSIDEEXPRESSIONSINTHESEEQUATIONSEQUAL,GIVESTHEREFORE,THESQUAREONCISEQUALTOTHESUMOFTHESQUARESONAANDBBURTON1991THEREAREMANYOTHERPROOFSOFTHEPYTHAGOREANTHEOREMONECAMEFROMTHECONTEMPORARYCHINESECIVILIZATIONFOUNDINTHEOLDESTEXTANTCHINESETEXTCONTAININGFORMALMATHEMATICALTHEORIES,THEARITHMETICCLASSICOFTHEGNOMANANDTHECIRCULARPATHSOFHEAVENTHEPROOFOFTHEPYTHAGOREANTHEOREMTHATWASINSPIREDBYAFIGUREINTHISBOOKWASINCLUDEDINTHEBOOKVIJAGANITA,ROOTCALCULATIONS,BYTHEHINDUMATHEMATICIANBHASKARABHASKARASONLYEXPLANATIONOFHISPROOFWAS,SIMPLY,“BEHOLD“THESEPROOFSANDTHEGEOMETRICALDISCOVERYSURROUNDINGTHEPYTHAGOREANTHEOREMLEDTOONEOFTHEEARLIESTPROBLEMSINTHETHEORYOFNUMBERSKNOWNASTHEPYTHGOREANPROBLEMTHEPYTHAGOREANPROBLEMFINDALLRIGHTTRIANGLESWHOSESIDESAREOFINTEGRALLENGTH,THUSFINDINGALLSOLUTIONSINTHEPOSITIVEINTEGERSOFTHEPYTHAGOREANEQUATIONTHETHREEINTEGERSX,Y,ZTHATSATISFYTHISEQUATIONISCALLEDAPYTHAGOREANTRIPLESOMEPYTHAGOREANTRIPLESXYZ345512137242594041116061THEFORMULATHATWILLGENERATEALLPYTHAGOREANTRIPLESFIRSTAPPEAREDINBOOKXOFEUCLIDSELEMENTSWHERENANDMAREPOSITIVEINTEGERSOFOPPOSITEPARITYANDMNINHISBOOKARITHMETICA,DIOPHANTUSCONFIRMEDTHATHECOULDGETRIGHTTRIANGLESUSINGTHISFORMULAALTHOUGHHEARRIVEDATITUNDERADIFFERENTLINEOFREASONINGTHEPYTHAGOREANTHEOREMCANBEINTRODUCEDTOSTUDENTSDURINGTHEMIDDLESCHOOLYEARSTHISTHEOREMBECOMESINCREASINGLYIMPORTANTDURINGTHEHIGHSCHOOLYEARSITISNOTENOUGHTOMERELYSTATETHEALGEBRAICFORMULAFORTHEPYTHAGOREANTHEOREMSTUDENTSNEEDTOSEETHEGEOMETRICCONNECTIONSASWELLTHETEACHINGANDLEARNINGOFTHEPYTHAGOREANTHEOREMCANBEENRICHEDANDENHANCEDTHROUGHTHEUSEOFDOTPAPER,GEOBOARDS,PAPERFOLDING,ANDCOMPUTERTECHNOLOGY,ASWELLASMANYOTHERINSTRUCTIONALMATERIALSTHROUGHTHEUSEOFMANIPULATIVESANDOTHEREDUCATIONALRESOURCES,THEPYTHAGOREANTHEOREMCANMEANMUCHMORETOSTUDENTSTHANJUSTANDPLUGGINGNUMBERSINTOTHEFORMULATHEFOLLOWINGISAVARIETYOFPROOFSOFTHEPYTHAGOREANTHEOREMINCLUDINGONEBYEUCLIDTHESEPROOFS,ALONGWITHMANIPULATIVESANDTECHNOLOGY,CANGREATLYIMPROVESTUDENTSUNDERSTANDINGOFTHEPYTHAGOREANTHEOREMTHEFOLLOWINGISASUMMATIONOFTHEPROOFBYEUCLID,ONEOFTHEMOSTFAMOUSMATHEMATICIANSTHISPROOFCANBEFOUNDINBOOKIOFEUCLIDSELEMENTSPROPOSITIONINRIGHTANGLEDTRIANGLESTHESQUAREONTHEHYPOTENUSEISEQUALTOTHESUMOFTHESQUARESONTHELEGSFIGURE2EUCLIDBEGANWITHTHEPYTHAGOREANCONFIGURATIONSHOWNABOVEINFIGURE2THEN,HECONSTRUCTEDAPERPENDICULARLINEFROMCTOTHESEGMENTDJONTHESQUAREONTHEHYPOTENUSETHEPOINTSHANDGARETHEINTERSECTIONSOFTHISPERPENDICULARWITHTHESIDESOFTHESQUAREONTHEHYPOTENUSEITLIESALONGTHEALTITUDETOTHERIGHTTRIANGLEABCSEEFIGURE3FIGURE3NEXT,EUCLIDSHOWEDTHATTHEAREAOFRECTANGLEHBDGISEQUALTOTHEAREAOFSQUAREONBCANDTHATTHEAREOFTHERECTANGLEHAJGISEQUALTOTHEAREAOFTHESQUAREONACHEPROVEDTHESEEQUALITIESUSINGTHECONCEPTOFSIMILARITYTRIANGLESABC,AHC,ANDCHBARESIMILARTHEAREAOFRECTANGLEHAJGISHAAJANDSINCEAJAB,THEAREAISALSOHAABTHESIMILARITYOFTRIANGLESABCANDAHCMEANSANDTHEREFOREOR,ASTOBEPROVED,THEAREAOFTHERECTANGLEHAJGISTHESAMEASTHEAREAOFTHESQUAREONSIDEACINTHESAMEWAY,TRIANGLESABCANDCHGARESIMILARSOANDSINCETHESUMOFTHEAREASOFTHETWORECTANGLESISTHEAREAOFTHESQUAREONTHEHYPOTENUSE,THISCOMPLETESTHEPROOFEUCLIDWASANXIOUSTOPLACETHISRESULTINHISWORKASSOONASPOSSIBLEHOWEVER,SINCEHISWORKONSIMILARITYWASNOTTOBEUNTILBOOKSVANDVI,ITWASNECESSARYFORHIMTOCOMEUPWITHANOTHERWAYTOPROVETHEPYTHAGOREANTHEOREMTHUS,HEUSEDTHERESULTTHATPARALLELOGRAMSAREDOUBLETHETRIANGLESWITHTHESAMEBASEANDBETWEENTHESAMEPARALLELSDRAWCJANDBETHEAREAOFTHERECTANGLEAHGJISDOUBLETHEAREAOFTRIANGLEJAC,ANDTHEAREAOFSQUAREACLEISDOUBLETRIANGLEBAETHETWOTRIANGLESARECONGRUENTBYSASTHESAMERESULTFOLLOWSINASIMILARMANNERFORTHEOTHERRECTANGLEANDSQUAREKATZ,1993CLICKHEREFORAGSPANIMATIONTOILLUSTRATETHISPROOFTHENEXTTHREEPROOFSAREMOREEASILYSEENPROOFSOFTHEPYTHAGOREANTHEOREMANDWOULDBEIDEALFORHIGHSCHOOLMATHEMATICSSTUDENTSINFACT,THESEAREPROOFSTHATSTUDENTSCOULDBEABLETOCONSTRUCTTHEMSELVESATSOMEPOINTTHEFIRSTPROOFBEGINSWITHARECTANGLEDIVIDEDUPINTOTHREETRIANGLES,EACHOFWHICHCONTAINSARIGHTANGLETHISPROOFCANBESEENTHROUGHTHEUSEOFCOMPUTERTECHNOLOGY,ORWITHSOMETHINGASSIMPLEASA3X5INDEXCARDCUTUPINTORIGHTTRIANGLESFIGURE4FIGURE5ITCANBESEENTHATTRIANGLES2INGREENAND1INRED,WILLCOMPLETELYOVERLAPTRIANGLE3INBLUENOW,WECANGIVEAPROOFOFTHEPYTHAGOREANTHEOREMUSINGTHESESAMETRIANGLESPROOFICOMPARETRIANGLES1AND3FIGURE6ANGLESEANDD,RESPECTIVELY,ARETHERIGHTANGLESINTHESETRIANGLESBYCOMPARINGTHEIRSIMILARITIES,WEHAVEANDFROMFIGURE6,BCADSO,BYCROSSMULTIPLICATION,WEGETIICOMPARETRIANGLES2AND3FIGURE7BYCOMPARINGTHESIMILARITIESOFTRIANGLES2AND3WEGETFROMFIGURE4,ABCDBYSUBSTITUTION,CROSSMULTIPLICATIONGIVESFINALLY,BYADDINGEQUATIONS1AND2,WEGETFROMTRIANGLE3,ACAEECSOFIGURE8WEHAVEPROVEDTHEPYTHAGOREANTHEOREMTHENEXTPROOFISANOTHERPROOFOFTHEPYTHAGOREANTHEOREMTHATBEGINSWITHARECTANGLEITBEGINSBYCONSTRUCTINGRECTANGLECADEWITHBADANEXT,WECONSTRUCTTHEANGLEBISECTOROFBADANDLETITINTERSECTEDATPOINTFTHUS,BAFISCONGRUENTTODAF,AFAF,ANDBADASO,BYSAS,TRIANGLEBAFTRIANGLEDAFSINCEADFISARIGHTANGLE,ABFISALSOARIGHTANGLEFIGURE9NEXT,SINCEMEBFMABCMABF180DEGREESANDMABF90DEGREES,EBFANDABCARECOMPLEMENTARYTHUS,MEBFMABC90DEGREESWEALSOKNOWTHATMBACMABCMACB180DEGREESSINCEMACB90DEGREES,MBACMABC90DEGREESTHEREFORE,MEBFMABCMBACMABCANDMBACMEBFBYTHEAASIMILARITYTHEOREM,TRIANGLEEBFISSIMILARTOTRIANGLECABNOW,LETKBETHESIMILARITYRATIOBETWEENTRIANGLESEBFANDCABFIGURE10THUS,TRIANGLEEBFHASSIDESWITHLENGTHSKA,KB,ANDKCSINCEFBFD,FDKCALSO,SINCETHEOPPOSITESIDESOFARECTANGLEARECONGRUENT,BKAKCANDCAKBBYSOLVINGFORK,WEHAVEANDBKACCAKB()THUS,BYCROSSMULTIPLICATION,THEREFORE,ANDWEHAVECOMPLETEDTHEPROOFTHENEXTPROOFOFTHEPYTHAGOREANTHEOREMTHATWILLBEPRESENTEDISONETHATBEGINSWITHARIGHTTRIANGLEINTHENEXTFIGURE,TRIANGLEABCISARIGHTTRIANGLEITSRIGHTANGLEISANGLECFIGURE11NEXT,DRAWCDPERPENDICULARTOABASSHOWNINTHENEXTFIGUREFIGURE12TRIANGLE1COMPARETRIANGLES1AND3TRIANGLE1GREENISTHERIGHTTRIANGLETHATWEBEGANWITHPRIORTOCONSTRUCTINGCDTRIANGLE3REDISONEOFTHETWOTRIANGLESFORMEDBYTHECONSTRUCTIONOFCDFIGURE13TRIANGLE1TRIANGLE3BYCOMPARINGTHESETWOTRIANGLES,WECANSEETHATCOMPARETRIANGLES1AND2TRIANGLE1GREENISTHESAMEASABOVETRIANGLE2BLUEISTHEOTHERTRIANGLEFORMEDBYCONSTRUCTINGCDITSRIGHTANGLEISANGLEDFIGURE14TRIANGLE1TRIANGLE2BYCOMPARINGTHESETWOTRIANGLES,WESEETHATBYADDINGEQUATIONS3AND4WEGETFROMFIGURES11AND12,WITHCD,WEHAVETHATPQCBYSUBSTITUTION,WEGETTHENEXTPROOFOFTHEPYTHAGOREANTHEOREMTHATWILLBEPRESENTEDISONEINWHICHATRAPEZOIDWILLBEUSEDFIGURE15BYTHECONSTRUCTIONTHATWASUSEDTOFORMTHISTRAPEZOID,ALL6OFTHETRIANGLESCONTAINEDINTHISTRAPEZOIDARERIGHTTRIANGLESTHUS,AREAOFTRAPEZOIDTHESUMOFTHEAREASOFTHE6TRIANGLESANDBYUSINGTHERESPECTIVEFORMULASFORAREA,WEGETWEHAVECOMPLETEDTHEPROOFOFTHEPYTHAGOREANTHEOREMUSINGTHETRAPEZOIDTHENEXTPROOFOFTHEPYTHAGOREANTHEOREMTHATIWILLPRESENTISONETHATCANBETAUGHTANDPROVEDUSINGPUZZLESTHESEPUZZLESCANBECONSTRUCTEDUSINGTHEPYTHAGOREANCONFIGURATIONANDTHEN,DISSECTINGITINTODIFFERENTSHAPESBEFORETHEPROOFISPRESENTED,ITISIMPORTANTTHATTHENEXTFIGUREISEXPLOREDSINCEITDIRECTLYRELATESTOTHEPROOFFIGURE16INTHISPYTHAGOREANCONFIGURATION,THESQUAREONTHEHYPOTENUSEHASBEENDIVIDEDINTO4RIGHTTRIANGLESAND1SQUARE,MNPQ,INTHECENTERSINCEMNANAMABEACHSIDEOFSQUAREMNPQHASLENGTHOFABTHISGIVESTHEFOLLOWINGAREAOFSQUAREONTHEHYPOTENUSESUMOFTHEAREASOFTHE4TRIANGLESANDTHEAREAOFSQUAREMNPQASMENTIONEDABOVE,THISPROOFOFTHEPYTHAGOREANTHEOREMCANBEFURTHEREXPLOREDANDPROVEDUSINGPUZZLESTHATAREMADEFROMTHEPYTHAGOREANCONFIGURATIONSTUDENTSCANMAKETHESEPUZZLESANDTHENUSETHEPIECESFROMSQUARESONTHELEGSOFTHERIGHTTRIANGLETOCOVERTHESQUAREONTHEHYPOTENUSETHISCANBEAGREATCONNECTIONBECAUSEITISA“HANDSON“ACTIVITYSTUDENTSCANTHENUSETHEPUZZLETOPROVETHEPYTHAGOREANTHEOREMONTHEIROWNFIGURE17TOCREATETHISPUZZLE,COPYTHESQUAREONBCTWICE,ONCEPLACEDBELOWTHESQUAREONACANDONCETOTHERIGHTOFTHESQUAREONACASSHOWNINFIGURE17PROOFUSINGFIGURE17TRIANGLECDEISCONGRUENTTOTRIANGLEACBBYLEGLEGINTRIANGLEACB,MACB90ANDTHESIDESHAVELENGTHSA,B,CINTRIANGLECDE,MCDE90ANDTHESIDESHAVELENGTHSA,B,CTRIANGLEEGHISCONGRUENTTOTRIANGLEACBBYLEGLEGTHEMEGH90ANDITSSIDESHAVELENGTHSAANDCSINCEEFBAAI,EGBTHUSTHEDIAGONALSCEANDEHAREBOTHEQUALTOCNOTEPIECES4AND7,ANDPIECES5AND6ARENOTSEPARATEDBYCALCULATINGTHEAREAOFEACHPIECE,ITCANBESHOWNTHATAREA1AREA2AREA3ARE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年厦门软件职业技术学院单招职业技能测试题库及参考答案详解一套
- 2026年山西省太原市单招职业适应性考试题库及参考答案详解
- 2026年河南建筑职业技术学院单招职业技能考试题库及参考答案详解1套
- 2026年南京特殊教育师范学院单招职业技能考试题库及完整答案详解1套
- 2026年辽宁省辽阳市单招职业倾向性测试题库含答案详解
- 2026年桂林山水职业学院单招职业倾向性测试题库及答案详解一套
- 2026年昭通卫生职业学院单招职业技能考试题库及答案详解一套
- 2026年河北司法警官职业学院单招职业倾向性考试题库参考答案详解
- 2025江苏盐城港控股集团有限公司招聘21人笔试考试参考试题及答案解析
- 2026年辽宁经济职业技术学院单招职业适应性考试题库及答案详解1套
- GB 17625.1-2022电磁兼容限值第1部分:谐波电流发射限值(设备每相输入电流≤16 A)
- 劳务劳动合同书电子版模板
- 2024工程停工补偿协议
- 伟大的《红楼梦》智慧树知到期末考试答案章节答案2024年北京大学
- JB-T 8532-2023 脉冲喷吹类袋式除尘器
- (正式版)SHT 3045-2024 石油化工管式炉热效率设计计算方法
- 《妇病行》教师教学
- 《养老护理员》-课件:协助卧床老年人使用便器排便
- 外研版高中英语必修第二册单词默写版
- 初三励志、拼搏主题班会课件
- Cuk斩波完整版本
评论
0/150
提交评论