




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
国家高中数学课程标准正在研究的15个课题编者按:国家高中数学课程标准正在制订。一个以“课程标准”为主题的高级研讨班己在南京举行。为了集思广益,我们征得有关方面同意,将正在研究的15个课题内容在此发表,供关心中国未来课程发展的同志参考。1、高中数学的选择性高中数学课程是否要有选择性,意见差异很大。一种意见是应当文理兼通,数学不分文理。前几年高考数学文理分卷的做法被认为不合适,某些地方己决定文理全卷。另一种意见则相反,高中阶段应当有更大的选择空间。一部分喜欢数学的学生,应该学得比现在课程中的数学多得多,而另一部分需要数学相对少的专业,则不必学得那么多(例如某些艺术类、高等职业类)。文科类、一般理工类、数理科学类的学生,所要求的数学不应该是一样的。从国际比较来看,绝大多数国家的高中数学都设置了多种选修系列。日本高中实行学分制。学生毕业的数学学分,从3学分到18不等,差异很大。2、信息技术在高中课程中的位置及其作用众所周知,中国要想在科学技术领域与当今世界发达国家一较高下,必须充分发展信息技术。这使得信息技术进入整个高中数学课程己是必然。如何依据国家的相关需求与发展趋势,明确信息技术在未来高中数学课程中的地位与作用,将是该课题研究的主要任务。具体内容凶手:从学生数学学习的角度不看,信息技术的意义究竟是什么;哪些信息技术可以(必须)进入高中数学课堂;科学计算器、图形计算器和CBL、计算机、网络?由于相关信息技术的介入,函数、几何、微积分、数据处理等内容将做相应的调整,有哪些需要调整、如何调整?更进一步,信息技术的介入,特别是一网以后将对学生学数学和教师教数学的方式产生什么样的影响?3、算法内容的设计与安排算法,是古代中国数学的一大特色,也是现代数学发展的一个重要方向随着计算机技术的迅猛发展,诸如排序算法、图论中的算法、无限的迭代算法等等,己为当代数学教育所密切关注。遗憾的是,中国数学教育对此尚缺乏应有的重视。在未来的高中数学课程体系中,算法是单独列一个学习主题,还是在有关数学内容中穿插相应的知识;对应于不同的课程系列,应当安排哪些具体学习内容;算法的学习如何与计算机技术相结合;如何帮助学生在实施运算的过程中理解算法、合理选择有效的算法;将成为本课题研究的主要方向。4、集合与逻辑集合是表述现代数学语言之一。作为一种数学语言和符号,它应当为高中生所了解;逻辑思维是人类理性思维的基本素养之一。应当是未来公民基本素质。因此,集合与逻辑应当进入高中数学课程体系。然而,高中阶段不会出现“集合论”,符号化的集合与逻辑知识似乎并非所有的人都需要、也不是每一个高中生所能够掌握的,因此,集合与逻辑学习的实质与重心是什么;高中学生是否都要学习数理逻辑;课程体系中是否要独立安排集合与逻辑的学习内容等;将成为该课题需要回答的问题。逻辑思维能力一直是中国数学教育所极为看重的课程目标,但数学不能等同于逻辑。会做数学题是否能迁移到日常工作中的逻辑思考也是一个未能解决的课题。5、离散数学进入课程的问题科学技术的发展、社会生活水平的提高,以及计算机的广泛应用,使得离散数学及相关数学模型越来越受人们的广泛重视。事实上,它己不仅仅是一促基础性知识,其中的许多内容甚至己被看作未来生活的常识性知识和方法,因此,离散数学的有关内容进入高中课程己成为必然。但是,相对于传统的数学知识(作为教学的)而言,它的体系性不强、也更需要与计算机的紧密结合,所以,本课题的研究将注重对离散数学教学内容的选择、组织以及如何与其他教学内容和计算机的结合等方面。6、数学建模新数学课程目标的一个重点是让学生全面了解数学的背景、意义和价值,尤其是它的应用性与方法性价值。己有的国际比较研究表明:数学建模是这方面一个极好的学习题材。而国内几年的初中与研究也使得数学建模,包括它的教育价值和教学特征,逐渐为众多的数学教师所了解,并得到了他们较为广泛的认同。因此,作为一个教学内容,数学建模应当、并且能够进入高中数学课程系列。目前我们首先研究的是:有哪些综合性选题可以列入数学建模的教学板块;怎样实施数学建模的教学,以充分发挥其特有的数学教育价值,以及关于数学建模学习的评价等等。7、有关几何内容的若干问题研究历史表明,任何一次数学课程改革,无论是国家级的,还是国际级的,几何始终是众关注的焦点,这一次也不例外。所不同的是,目前的国际大背景已经趋同,例如,适度降低欧几里得几何的演绎要求;淡化对二次曲线的人为雕凿的研究;改变几何对象处理单一化的模式,加强直观几何;以及引入坐标、微量、变换等多种描述和研究图形与空间的手法等。不公如此,义务阶段数学课程标准也为处理几何内容提供了新的思路。本课题的研究将在综合国际比较、现行的教学大纲和义务阶段标准的基础之上进行,研究的内容也很宽,主要包括:打破二、三维几何学习的壁垒。过去是初中学习二维几何、高中学习三维几何,这与学生认知规律显然不符。新的标准无疑将改变这一现状,但如何实现,需要研究的问题很多。几何课程的主线。综合、变换、微量、坐标等方式都应当成为高中学生了解图形与空间的重要手段,但它们各自在高中课程中的具体位置如何,需要研究。是否应当有一个方式作为主线贯穿始终?其他方式的地位如何体现、具体要求是什么?解析几何的教学目标。目前国际上几乎只有我们还把圆锥曲线的系统作为课程目标,为什么?我们应当改吗?对于图形与空间的研究而言,坐标的意义究竟何在?8、矩阵需要吗?这也是一个并非陌生的话题;它曾经在我们的数学教学大纲出现,但又被丢弃,原因是什么?目前在多数国家、尤其是发达国家的课程标准中都可以见到它。而本身也确实是一个极好的数学表达工具;在研究数学对象、用数学解决实际问题等活动中都有很好的应用价值,可以说,矩阵已经成为一种世界通用的语言。事实上,它还与整个课程体系密切相关;用向量研究几何需要它,讨论几何变换大概它,解线性方程组也与它相关,许多数学建模问题也离不开它,它应当出现在课程标准中吗?是否所有的人都要学习矩阵?9、二项式定理、复数、数学归纳法的地位过去,二项式定理、复数、数学归纳法曾经长期被当作所有学生都要学习的内容。但在许多国家的中学数学课程中己舍弃了复数和数学归纳法。但有许多教师认为复数可以学,究竟应当怎么办?它们的教育价值是什么,能够通过教学实现吗?比如说数学归纳法,它有较高的方法论意义,但经验表明许多学生并不能真正地理解它。总之,对于二项式定理、复数与数学归纳法,我们的看法是什么?所有的人都要学习它们,还是不同的人学习不同的对象?10、统计与概率的课程目标相比之下,统计与概率是我们现行课程与国际流行区别最大的地方。多年来忽视随机性数学的学习,但“降水概率”赫然出现在荧屏上。数学课程的滞后令人汗颜。现实表明,未来的公民离不开概率;9年义务教育阶段的数学课程标准也计划了较好的铺垫性设计,因此,它无疑应当进入高中数学课程体系。我们面临的问题是:对学生而言,统计与概率学习的最重要价值是什么?相对于确定性而言,这种研究随机现象的、不确定性数学关内容与方法上有什么重要的特征;应当削弱古典概型吗?当然,作为一个新的教学板块,其课程内容结构应当成为本课题研究的重点。11、微积分的地位几经出入,微积分最终在几乎所有国家的课程体系中占了一席之地。在大多数学省份,微积分因不是高考内容而形同虚设。在新的数学课程中,理所当然地要恢复它的地位。在此,我们需要慎重思考的是:学生学习微积分的主要目的是什么?所有的学生都要学习微积分吗(几乎没有国家这样做)?处理微积分的方法可以改变吗?传统由极限理论开始,是否可以从变化率入手(如著名的哈佛微积分)?中学里讲微积分,是否要大力用于研究初等函数的性质(单调、极值、不等式)?12、铺垫性工作研究我们所习惯的课程特征之一是:一个内容要么不学、要么一口气学到底,比如函数,初三以前学生从不接触函数的思想、方法和观念,一旦开始学习函数,便一口气研究函数的一般表示法、抽象性质、应用,以及与其他数学对象之间的关系。事实上,这既不符合学生的认知规律,也不能正确反映人类对它的认识过程,更不能表现出数学发展的过程性与整体性,其结果必然是影响学生对它的理解和学习兴趣。高中课程标准将特别关注相关数学知识发展的过程性与整体性,力求使有重要的数学知识的学习都有一个铺垫的过程,形成一个整个基础教育阶段一体化的课程标准。13、好传统的继承与发展所有的改革都是在前人工作的基础之上进行的,成功的改革必须借助、并且民展己有的好传统。我们的课程标准应当吸取并发展哪些己有的好传统呢?中国的数学教育一贯极为关注学生的基础知识(技能)与基本能力,这种传统我们不能丢。但需要思考的是:这些传统中有哪些应当丢弃;当今社会的基础知识(技能)与基本能力是什么?怎样培养与提高学生的基础知识(技能)与基本能力?除了这些,我们还应当有其他课程目标吗?14、课程标准的操作性研究相对于现行课程体系而言,新的课程标准表现出一种结构性变革,尤其是其中的可选择性特征。她的顺利实现有赖于方方面面的条件、课程政策、课程结构、教师(教学)资源、教师观念、教学设备、评价体系等等。现行教学体制下,她无疑是难以实现的,然而取法乎上,仅得其中。我们的目标是改革,努力改变现行体制,创造有利于新课程标准实施的教学环境。为此我们需要研究课程标准实施的客观条件、目前所面临的困难与障碍、解决问题的建设性建议等。15、数学文化数学作为一种文化现象,己为世人所共识。数学不是干巴巴的逻辑链条,而是活生生的科学现实。数学与社会、数学与历史、数学与经济、数学与军事、数学与日常生活,以及数学思想方法和数学意识的形成,都是高中数学课程中应当涉及的。这种非形式化的介绍,既可增加数学学习的兴味,又能提高数学的德育功能。当然,这是新事物,应当多做研究,慎重处理。 高中数学课程标准设想简介 继“义务教育阶段国家数学课程标准(征求意见稿)”正式推出之后,高中数学课程标准正在紧锣密鼓的进行研制。高中数学课程必须体现时代精神,具有先进性;必须着眼未来公民素质,大众化;必须以学生发展为本,并具有选择性;必须有大量数学教育的研究为支撑,有更高的科学性;必须体现创新精神。这一切已经成为社会各方面人士的共识。普遍认为高中教学课程结构宜为有必修的基础课程与选修的不同序列课程组成。高中一年级为基础课程,学完这一部分就可以达到高中毕业的最低教学要求;然后从高二开始补充、设计适合不同需要的选修课程,特别是允许和鼓励优秀学生学习更多、更好的数学。分设数学A、数学B、数学C三个系列的选修课。基础课程的主要目标在于提高公民的基本数学素质,为社会培养合格的公民,同时为学生以后的数学学习走向和后继的学习奠定基础。数学C侧重于反映数学在人类社会发展过程中的作用、定义和贡献,以及对未来社会发展的价值。主要供文史哲法等专业采用。数学B侧重于反映数学在日常生活及其它科学技术领域的应用,以加深学生对数学作为一门技术所体现出的价值的理解。主要供工科、经济等专业采用。数学A侧重于反映作为科学的数学的基本特点,包括研究对象、研究方法和研究成果等方面。主要供理科专业采用。教学教法研究您的查询字: 高中数学课程标准 已在快照中注明,点击会跳到首次出现查询词的位置。 高中数学新课程标准 1课程框架高中数学课程分必修和选修。必修课程由5个模块组成;选修课程有4个系列,其中系列1、系列2由若干个模块组成,系列3、系列4由若干专题组成;每个模块2学分(36学时),每个专题1学分(18学时),每2个专题可组成1个模块。课程结构如图所示。 注:上图中 代表模块(36学时), 代表专题(18学时)。2必修课程必修课程是每个学生都必须学习的数学内容,包括5个模块。数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。数学2:立体几何初步、平面解析几何初步。数学3:算法初步、统计、概率。数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。数学5:解三角形、数列、不等式。3选修课程对于选修课程,学生可以根据自己的兴趣和对未来发展的愿望进行选择。选修课程由系列1,系列2,系列3,系列4等组成。系列1:由2个模块组成。选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用;选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。系列2:由3个模块组成。选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何;选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入;选修2-3:计数原理、统计案例、概率。系列3:由6个专题组成。选修3-1:数学史选讲;选修3-2:信息安全与密码;选修3-3:球面上的几何;选修3-4:对称与群;选修3-5:欧拉公式与闭曲面分类;选修3-6:三等分角与数域扩充。系列4:由10个专题组成。选修4-1:几何证明选讲。选修4-2:矩阵与变换。选修4-3:数列与差分。选修4-4:坐标系与参数方程。选修4-5:不等式选讲。选修4-6:初等数论初步。选修4-7:优选法与试验设计初步。选修4-8:统筹法与图论初步。选修4-9:风险与决策。选修4-10:开关电路与布尔代数4关于课程设置的说明课程设置的原则与意图必修课程内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备。选修课程内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学修养奠定基础。其中,系列1是为那些希望在人文、社会科学等方面发展的学生而设置的,系列2则是为那些希望在理工、经济等方面发展的学生而设置的。系列1,系列2内容是选修系列课程中的基础性内容。系列3和系列4是为对数学有兴趣和希望进一步提高数学素养的学生而设置的,所涉及的内容反映了某些重要的数学思想,有助于学生进一步打好数学基础,提高应用意识,有利于学生终身的发展,有利于扩展学生的数学视野,有利于提高学生对数学的科学价值、应用价值、文化价值的认识。其中的专题将随着课程的发展逐步予以扩充,学生可根据自己的兴趣、志向进行选择。根据系列3内容的特点,系列3不作为高校选拔考试的内容,对这部分内容学习的评价适宜采用定量与定性相结合的方式,由学校进行评价,评价结果可作为高校录取的参考。设置了数学探究、数学建模、数学文化内容高中数学课程要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,并在高中阶段至少安排较为完整的一次数学探究、一次数学建模活动。高中数学课程要求把数学文化内容与各模块的内容有机结合。具体的要求可以参考数学探究、数学建模、数学文化的要求(参见第98页)。模块的逻辑顺序必修课程是选修课程中系列1,系列2课程的基础。选修课程中系列3、系列4基本上不依赖其他系列的课程,可以与其他系列课程同时开设,这些专题的开设可以不考虑先后顺序。必修课程中,数学1是数学2,数学3,数学4和数学5的基础。系列3、系列4课程的开设学校应在保证必修课程,选修系列1、系列2开设的基础上,根据自身的情况,开设系列3和系列4中的某些专题,以满足学生的基本选择需求。学校应根据自身的情况逐步丰富和完善,并积极开发、利用校外课程资源(包括远程教育资源)。对于课程的开设,教师也应该根据自身条件制定个人发展计划。(二)对学生选课的建议学生的兴趣、志向与自身条件不同,不同高校、不同专业对学生数学方面的要求也不同,甚至同一专业对学生数学方面的要求也不一定相同。随着时代的发展,无论是在自然科学、技术科学等方面,还是在人文科学、社会科学等方面, 都需要一些具有较高数学素养的学生,这对于社会、科学技术的发展都具有重要的作用。据此,学生可以选择不同的课程组合,选择以后还可以根据自身的情况和条件进行适当的调整。以下提供课程组合的几种基本建议。1 学生完成10个学分的必修课程,在数学上达到高中毕业的要求。2在完成10个必修学分的基础上,希望在人文、社会科学等方面发展的学生,可以有两种选择。一种是,在系列1中学习选修1-1和选修1-2,获得4学分;在系列3中任选2个专题,获得2学分,共获得16学分。另一种是,如果学生对数学有兴趣,并且希望获得较高数学素养,除了按上面的要求获得16学分,同时在系列4中获得4学分,总共获得20学分。3希望在理工(包括部分经济类)等方面发展的学生,在完成10个必修学分的基础上,可以有两种选择。一种是,在系列2中学习选修2-1,选修2-2和选修2-3,获得6学分;在系列3中任选2个专题,获得2学分;在系列4中任选2个专题,获得2学分,共获得20学分。另一种是,如果学生对数学有兴趣,希望获得较高数学素养,除了按上面的要求获得20学分,同时在系列4中选修4个专题,获得4学分,总共获得24学分。课程的组合具有一定的灵活性,不同的组合可以相互转换。学生做出选择之后,可以根据自己的意愿和条件向学校申请调整,经过测试获得相应的学分即可转换。二、课程的基本理念1构建共同基础,提供发展平台高中教育属于基础教育。高中数学课程应具有基础性,它包括两方面的含义:第一,在义务教育阶段之后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;第二,为学生进一步学习提供必要的数学准备。高中数学课程由必修系列课程和选修系列课程组成,必修系列课程是为了满足所有学生的共同数学需求;选修系列课程是为了满足学生的不同数学需求,它仍然是学生发展所需要的基础性数学课程。2提供多样课程,适应个性选择高中数学课程应具有多样性与选择性,使不同的学生在数学上得到不同的发展。高中数学课程应为学生提供选择和发展的空间,为学生提供多层次、多种类的选择,以促进学生的个性发展和对未来人生规划的思考。学生可以在教师的指导下进行自主选择,必要时还可以进行适当地转换、调整。同时,高中数学课程也应给学校和教师留有一定的选择空间,他们可以根据学生的基本需求和自身的条件,制定课程发展计划,不断地丰富和完善供学生选择的课程。3倡导积极主动、勇于探索的学习方式学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。同时,高中数学课程设立“数学探究”、“数学建模”等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯。高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识。4注重提高学生的数学思维能力高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想像、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断。数学思维能力在形成理性思维中发挥着独特的作用。5发展学生的数学应用意识20世纪下半叶以来,数学应用的巨大发展是数学发展的显著特征之一。当今知识经济时代,数学正在从幕后走向台前,数学和计算机技术的结合使得数学能够在许多方面直接为社会创造价值,同时,也为数学发展开拓了广阔的前景。我国的数学教育在很长一段时间内对于数学与实际、数学与其他学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。近几年来,我国大学、中学数学建模的实践表明,开展数学应用的教学活动符合社会需要,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野。高中数学课程应提供基本内容的实际背景,反映数学的应用价值,开展“数学建模”的学习活动,设立体现数学某些重要应用的专题课程。高中数学课程应力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。6与时俱进地认识“双基”我国的数学教学具有重视基础知识教学、基本技能训练和能力培养的传统,新世纪的高中数学课程应发扬这种传统。与此同时,随着时代的发展,特别是数学的广泛应用、计算机技术和现代信息技术的发展,数学课程设置和实施应重新审视基础知识、基本技能和能力的内涵,形成符合时代要求的新的“双基”。例如,为了适应信息时代发展的需要,高中数学课程应增加算法的内容,把最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“双基异化”的倾向。7强调本质,注意适度形式化形式化是数学的基本特征之一。在数学教学中,学习形式化的表达是一项基本要求,但是不能只限于形式化的表达,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。数学的现代发展也表明,全盘形式化是不可能的。因此,高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。数学课程要讲逻辑推理,更要讲道理,通过典型例子的分析和学生自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法,追寻数学发展的历史足迹,把数学的学术形态转化为学生易于接受的教育形态。8体现数学的文化价值数学是人类文化的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,高中数学课程提倡体现数学的文化价值,并在适当的内容中提出对“数学文化”的学习要求,设立“数学史选讲”等专题。9注重信息技术与数学课程的整合现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等方面产生深刻的影响。高中数学课程应提倡实现信息技术与课程内容的有机整合(如,把算法融入到数学课程的各个相关部分),整合的基本原则是有利于学生认识数学的本质。高中数学课程应提倡利用信息技术来呈现以往教学中难以呈现的课程内容,在保证笔算训练的前提下,尽可能使用科学型计算器、各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。10建立合理、科学的评价体系现代社会对人的发展的要求引起评价体系的深刻变化,高中数学课程应建立合理、科学的评价体系,包括评价理念、评价内容、评价形式和评价体制等方面。评价既要关注学生数学学习的结果,也要关注他们数学学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中所表现出来的情感态度的变化。在数学教育中,评价应建立多元化的目标,关注学生个性与潜能的发展。例如,过程性评价应关注对学生理解数学概念、数学思想等过程的评价,关注对学生数学地提出、分析、解决问题等过程的评价,以及在过程中表现出来的与人合作的态度、表达与交流的意识和探索的精神。对于数学探究、数学建模等学习活动,要建立相应的过程评价内容和方法。新世纪数学课程改革呼唤教师角色的转变 福建省南安一中 林少安安徽省马鞍山八中张艳秋 论文摘要:高中数学试验教材已于三年前在山西、江西、天津三省市进行试验,去年高中数学试验教材又增加了安徽等省市进行实验。至今,高中数学试验教材已在全国十一个省市试用。按照国家教育部计划,高中数学课程标准将在2010年在全国实施。作为未实行高中数学试验教材的福建省将如何作好实施前的准备呢?笔者有幸参加了国家级骨干教师培训班,在培训过程中,我们对高中数学课程标准,高中数学课程标准研制工作组制定的高中数学课程标准研制进展状况进行了认真的研究,并对已实施高中数学试验教材的省市进行调研,提出了课程改革呼唤教师角色转变,旨在于为即将实行高中数学试验教材的同仁进行共同探究。 关键词:数学、课程、角色的转变。中学数学教育是学校教育的重要组成部分,它在教育学生:陶冶学生,发展学生思维能力等方面都起着十分重要的作用。随着社会的发展,人们对数学教育的要求会越来越高。为适应这种要求,高中数学试验教材已在全国十一个省市试用。高中数学课程标准也在讨论制订之中。但我们知道:从教育的效果来看,课程可分为预期课程,实施课程和实现课程三种。预期课程是由国家政府部门和教育专家们制订的,而实施课程是教师根据自己对预期课程的理解和自己的主观愿望所决定的。由此可知,预期课程设计得再理想,如果教师不能按要求去实施,那么其教育效果可想而知。因此,我们说:中学数学课程改革成败的关键在数学教师。为使中学数学课程改革能够深入下去,使新的中学数学课程标准能够顺利实施,并达到预期的目的。笔者认为有必要,根据素质教育目标,新的高中数学教学大纲和高中数学课程标准框架,对中学数学教师的角色做认真的研究。一、 课程标准对中学数学教师角色的期待(一)课程改革的深入要求教师具有全新的教育观念教育不仅具有生产力等经济功能和价值,而且这种价值和功能要与人的精神世界的丰富,道德品质的提高,人与自然的和谐,人文精神的培养相协调。而我们原来的有些教育方法,对学生个性心理的发展,以及创新素质的培养是格格不入的。针对这一客观事实,教师的职能应该做相应的改变,由封闭式的教学改为指导学生”开放式学习,”教师应树立以”学生的发展为本”的教育观念。建立完全平等的新型师生关系。另外,”双基”是我们的特长,但”双基”是随着时代而变化的,”代数运算的熟练和逻辑推理的严谨”虽然是双基的两个基本点,但归纳、猜想、创新的思维方式,广阔的数学视野,信息技术手段的运用,却应该是”新双基”的有机组成部分,中学数学教师对此必须有清醒的认识。(二)课程中新内容的增设,要求教师具有创新精神新课程中,增设了”数学建模,探究性问题,数学文化”这三个模块式的内容。这些内容的增设其主要目的是培养学生的数学素质。这些内容要求教师要用全新的教学模式来教学,因此,要求教师要具有创新精神,要能够推崇创新,追求创新和以创新为荣,善于发现问题和提出问题。要善于打破常规,突破传统观念,具有敏锐的洞察力和丰富的想象力。使思维具有超前性和独创性。教师自身应具备宽厚的基础知识和现代信息素质,形成多层次、多元化的知识结构;有开阔的视野,善于分析综合信息,有创新的数学模式,创新的教学方法,灵活的教学内容选择,以创新思维培养为核心的评价标准等。善于创设”创新的自由空间”,为学生提供更广阔的学习园地,指导学生改进学习方式。(三)新课程的多样性、选择性要求中学数学教师具有良好的综合素质新的高中课程,具备有多样的选择性,在共同基础上设量不同的系列课程,以供学生进行适合自己发展的选择。整个高中数学课程体系,包括课程设置,课程目标,课程内容等,都将致力于根据学生的不同志趣,能力特征以及未来职业需求和发展需要,向他们提供侧重于不同方面的数学学习内容和数学实践活动。这就要求中学数学教师有能力胜任不同的课程,既能教基础课程也能教系列课。教师不仅是解惑者,还应是问题的诊断者,学习的启发者,还要求教师能了解所教学生的个性发展。指导帮助学生按自己的能力需要选择所学课程。(四)终身教育的提出,要求教师具有可持续发展的人格首先,终身教育的提出,要求教师把自身知识的更新视为一种责任,使”终身学习”内化为教师的自觉行为。其次,学生正处于人格塑造和定化时期,社会文化中的价值取向、理想和信仰、道德情操、审美情趣等都会从教师的角色文化中折射出来。并通过他”映照”在学生的人格世界中,作为数学教师的言传身教,决定了其人格对学生人格的形成有”润物细无声”的功效。这就要求中学数学教师按社会的道德原则和规范去塑造自我,实现”超我”。二、中学数学教师应做角色转变的准备(一)教师思想观念的更新首先,认识到课程改革的必要性和重要性。教师要摆脱旧的教育观念的束缚。更新教育观念,树立正确的人才观,质量观和学生观。其次,教师要认识到自己在课程改革中的作用和地位。能以饱满的热情投身到课程改革中来。第三,教师要认识到:”数学素质教育”的提出,要求教师的教学要关注每一位学生的身心发展的需要。而”培养创新精神与实践能力”的提出,要求教师的教学要促进学生个性的发展。教师要真正理解:”人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展。”这是新世纪数学课程的基本理念。第四,教师要认识到在未来社会中,获取知识的能力比获取知识本身更重要,获取信息的方法比获取信息本身更关键。教师给学生的应该是方法库,工具库。教学模式应是:知识,素质,创新能力的三维教学模式。(二)教师知识结构的更新教师的知识结构是由本体性知识,条件性知识,实践性知识和文化知识组成。未来社会的知识结构应是:信息化板块结构,集约化基础结构,直线化前沿结构。教师作为社会化的人,必须更新自己的知识,才能适应社会的要求。从课程改革来看,新的高中数学课程标准中,将增加很多新的知识内容。有些内容是教师学过的,也有内容是教师没有学过。为了适应教学,中学数学教师首先应通过自学,参加继续教育学习或一些培训班的学习,提高自己的专业理论水平。其次,通过报刊,杂志、信息技术等收集有关的教育教学资料,充实自己的实践知识。数学文化课的开设,综合课程的开设,要求中学数学教师要了解数学史,解数学文化的教育价值,了解数学在其它相关学科的应用等。也就是说数学教师不仅精通自己的专业知识,还要扩大知识面,对跨学科的知识有所了解。随着社会的发展,我们所面对的学生也会更加复杂化,这就要求教师必须不断学习心理学和教育学,能够以新的教育理论来支撑自己的教学工作。(三)教师心理观念的更新在只有语言的传媒时代,教师有绝对的权威,教师是学生获取知识的唯一来源。在文学出现以后,这时的教师在课堂教学中仍是主演,因为学生必须通过教师的教学,才能获得必要的知识,进而才能自己阅读书籍。到了信息时代,学生获得教育信息的渠道是多元化的。有时学生获得的信息可能比教师快,比教师多。所以这时的教师在学生面前没有了绝对的权威。这是教师在心理上要接受的第一个事实。现代教学论认为,在教育过程中,教师将扮演着多种角色,从多方面影响着学生的发展,教师不仅仅只是知识的传递者,他还是学生的榜样,集体的领导者,人际关系的艺术家,心理治疗工作者,学者和学习者,以及学生的朋友和知己。在教学过程中,教师是主导,学生是主体,教学活动是在师生双方的相互作用下共同完成的。学生的主体作用只有在教师良导作用下才能得以发挥,而教师的主导作用必须是建立在学生的主体作用之上的。只有当师生之间互相作用,学生的能动性,自主性和创造性才能得以激发和培养,学生才能获得充分的发展,因此,在课堂教学中,教师与学生是合作伙伴的关系。教师是组建者,引导者,解惑者。教师与学生在人格是平等的。这是教师在心理上要接受的第二个事实。教师在学生面前的角色变化必将成为事实,我们教师只有在心理上做好充分的准备才能扮演好自己的角色。三教师施教能力的提高(一)教师要提高把握新课程的能力新的课程标准在保证基础知识的教学,基本技能的训练,基本能力的培养的前提下,删减了传统的初等数学中次要的,用处不大的,而且对学生接受起来有一定困难的内容。与此同时,增加了一些为了进一步学习打基础,有着广泛应用的,而且又是学生能够接受的新知识。作为中学数学教师首先要了解减去什么,增加了什么?其次对新的教材体系中的新内容,新要求,要努力吃透。对知识点的分布及其要求的不同。教学时要把握每一处出现时的度,防止因不了解整体安排而把教材中分几次达成的知识作一次性处理。提前拔高。对新内容,应分析为什么引入,引入了多少?怎样教学能体现新教材的意图,防止范围,难度失控。对应用性和实践性的要求,应给予充分的重视。切不可因应试是否需要作弃取。对删去的内容也要分析,有些知识点是内容删去了,但其思想可能还会有所体现。(二)教师要提高使用现代教育技术的能力随着现代教育技术的不断发展,新的课程标准中,已将计算器的应用引入教材,多媒体计算机辅助教学将进入课堂。这就要求教师掌握计算机工具,在助教方面:能提出好的脚本,能使用常见的数学教学软件解决教学中的重难点,能评价课件的好坏,有能力选择好的课件。有能力在网络上获取教学中所需的信息资料等。在助学方面:教师能够组织引导学生参与数学实验。例如利用动画技术演示几何图形运动变化规律,三角函数曲线周期的变化规律,探求点的轨迹等。通过实践探索,使学生体验数学家的思维过程。教师要能为培养学生的探索精神和创造意识提供丰富多彩的教育环境和有力的学习工具。教师还要能指导学生使用计算器进行繁杂的计算,节省计算时间,提高学习效率。(三)教师要提高因材施教的能力由于高中教育的普及,大学升学率的提高,读高中的学生会越来越多。因此学生的数学知识的差异也会越来越大。这就要求教师要探索课堂教学的新模式。教师不仅要研究教法,更重要的是要研究学法。从学生学习的认识理论的角度去分析学生的特点,激发学生的学习兴趣,使每个学生的学习都有所进步。综上所述,在课程改革不断深入的今天,中学教学教师极早认清未来教育中,社会对教师角色的期望,作好角色转变的准备。将有利于教师自身素质的提高,有利于确保课程改革的顺利进行。百年大计,教育为本。有了第一流的教师,才会有第一流的教育,才会出第一流的人才。当代的中学数学教师的职责和使命比以往任何时候都更重要,而对于教师角色的正确定位,在时代的浪潮中,正如镇舟之石,其意义是重大的。参考文献1、全日制普通高级中学数学教学大纲(试验修订版)2000.32、高中数学课程标准基本框架(征求意见稿)3、高中数学课程标准研制工作组高中数学课程标准研制进展状况 2000.10.164、苏式冬基础教育课程改革与高师课程研究创建充满生机与活力的师范教育北京师范大学出版社1999.9新课程标准下对数学教学过程的理解 乌鲁木齐铁二中高中部 杨 帆 2002年9月什么是数学教学过程?教学论认为:数学教学过程既是一种特殊的认识过程,又是一个促进学生全面发展的过程,它是认识与发展相统一的活动过程。新课程标准下数学教学过程可作这样的表述:数学教学过程是师生双方在数学教学目的指引下,以数学教材为中介,教师组织和引导学生主动掌握数学知识、发展数学能力、形成良好个性心理品质的认识与发展相统一的活动过程。其实数学教学过程还可以这样表述:从结构来看,它是一个以教师、学生、教材、教学目的和教学方法为基本要素的多维结构;从功能来看,它是一个教师引导学生掌握数学知识、发展数学能力、形成良好心理品质的认识与发展相统一的过程;从性质来讲,它又是一个有目的、有计划的师生相互作用的双边活动过程。一、新课程下的数学教学过程是多种要素的有机结合体“教学”一词,最简单的理解便是“教”与“学”,也可理解为“师教生学”或“以教导学”、“以教促学”。归根结底,“教”为了“学”。在新课程下,数学教学过程是实现课程目标的重要途径,它突出对学生创新意识和实践能力的培养,教师是数学教学过程的组织者和引导者。新课程要求教师在设计教学目标、选择课程资源、组织教学活动、运用现代教育技术、以及参与研制开发学校课程等方面,必须围绕施素质教育这个中心,同时面向全体学生,因材施教,创造性地进行教学。新课程标准下还要求教师学习、探索和积极运用先进的教学方法,不断提高师德素养和专业水平。新课程标准还认为学生是数学教学过程的主体,学生的发展是教学活动的出发点和归宿,学生的学习应是发展学生心智、形成健全人格的重要途径。因此,数学教学过程是教师根据不同学习内容,让学生采取掌握、接受、探究、模仿、体验等学习方式,使学生的学习成为在教师指导下主动的、富有个性的过程。新课程标准认为教材是数学教学过程的重要介质,教师在数学教学过程中应依据课程标准,灵活地、创造性地使用教材,充分利用包括教科书、校本资源在内的多样化课程资源,拓展学生发展空间。二、新课程标准下数学教学过程的核心要素是师生相互沟通和交流新课程标准下数学教学过程的核心要素是加强师生相互沟通和交流,倡导教学民主,建立平等合作的师生关系,营造同学之间合作学习的良好氛围,为学生的全面发展和健康成长创造有利的条件。因此数学教学过程是师生交往、共同发展的互动过程,而互动必然是双向的,而不是单向的。由于教学活动是一种特殊的认识过程,在这个过程中,师生情感交流将直接影响教学效果。在数学教学过程中,讨论是情感交流和沟通的重要方法。教师与学生的讨论,学生与学生的讨论是学生参与数学教学过程,主动探索知识的一种行之有效的方法。新课程标准要求教学要依照教学目标组织学生充分讨论,并以积极的心态互相评价、相互反馈、互相激励,只有这样才能有利于发挥集体智慧,开展合作学习,从而获得好的教学效果。我认为新课程标准下教师高超的教学艺术之一就在于调动学生的积极情感,使之由客体变为主体,使之积极地、目的明确地、主动热情地参与到教学活动中来。新课程标准强调数学教学过程中教师与学生的真诚交流。新课程标准认为数学教学过程中不能与学生交心的老师将不再是最好的老师。成功的教育是非显露痕迹的教育,是润物细无声的教育,是充满爱心的教育。在课堂教学过程中,真诚交流意味着教师对学生的殷切的期望和由衷的赞美。期望每一个学生都能学好,由衷地赞美学生的成功。这可以从心理学上著名的皮格马利翁-罗森塔尔效应得到验证。古希腊神话中的塞浦路斯国王皮格马利翁对一座少女雕像产生了爱情,他的期望使这座少女雕像“活”了起来。1968年,瑞典教育家罗森塔尔对美国一所小学18个班的学生进行的试验,进一步表明外界的殷切期望会对人产生强烈的激励效应,即“皮格马利翁-罗森塔尔”效应。我认为,作为教师,应该在数学教学过程的始终,都要对学生寄予一种热烈的期望,并且要让学生时时感受到这种期望,进而使学生为实现这种期望而做出艰苦努力。教师在数学教学过程中以肯定和赞美的态度对待学生,善于发现并培养学生的特长,对学生已经取得或正在取得的进步和成绩给予及时、充分的肯定评价,从而激发学生的自信心、自尊心和进取心,不断将教师的外在要求内化为学生自己更高的内在要求,实现学生在已有基础上的不断发展。三、新课程标准下数学教学过程的完美实现在于教师与学生的充分理解和信任。新课程标准下要求教师在数学教学过程中充分理解和信任学生。理解是教育的前提。在教学中教师要了解学生的内心世界,体会他们的切身感受,理解他们的处境。尊重学生,理解学生,热爱学生,只要你对学生充满爱心,相信学生会向着健康、上进的方向发展的。因为“教育是植根于爱的(鲁迅语)”。“聪明的教师总是跟在学生后面;愚昧的教师总是堵在学生的前面。”基于以上的观点,教师在课前应该认真了解学生的思想实际、现有的认知水平,尤其是与新知识有联系的现有水平;了解他们心中所想、心中所感。在吃准、吃透教材和学生的基础上设计双重教学方案:备教学目标,更备学习目标;备教法,更要备学法;备教路,更备学路;备教师的活动,更备学生的活动。正如教育家陶行知先生说的:“先生的责任不在教,而在教学生学。教的法子必须根据学的法子。”我们的教师以前在讲课时,对学生的能力往往是信任不够,总怕学生听不明白、记不住,因此,课上教师说得多、重复的地方多,给学生说的机会并不多。其实“说”也只是浮在表面上,并没有什么深度地说。教师的讲为主的数学教学过程,占用了学生发表自己看法的时间,使教师成为课堂上的独奏者,学生只是听众、观众,这大大地剥夺了学生的主体地位。其实,学生并不是空着脑袋走进教室的。在走进课堂前,每个学生的头脑中都充满着各自不同的先前经验和积累,他们有对问题的看法和理解,也想表达、诉说。契可夫曾说过:“儿童有一种交往的需要,他们很想把自己的想法说出来,跟老师交谈。”这就要求教师新课程标准下要转变观念,积极创设能激起学生回答欲望、贴近学生生活、让他们有可说的问题,让他们有充分发表自己看法和真实想法的机会,变“一言堂”为“群言堂”。当然,教师作为教学的组织者也不能“放羊”,在学生说得不全、理解不够的地方,也要进行必要的引导。以往的教学中,教师在讲到某些重、难点时,由于对学生学习潜力估计不足,所以教师包办代替的多,讲道理占用了学生大量宝贵的学习时间。即使让学生自学也是由“扶”到“半扶半放”,再到“放”。叶圣陶先生说:“教者,盖在于引导、启发。”这就是说教师是指导者就不能“代庖”,教师是启发者就不能“填鸭”。因此新课程标准要求教师“目中无人”,把自己视为教学的指导者、促进者和帮助者,是“带着学生走向知识”而不是“带着知识走向学生”。基于此,课堂上教师可以采用“小组合作学习”的教学形式,以小组成员合作性活动为主体。学生在小组内相互讨论、评价、倾听、激励,加强学生之间的合作与交流,充分发挥学生群体磨合后的智慧,必将大大拓展学生思维的空间,提高学生的自学能力。另外,教师从讲台上走下来,参与到学生中间,及时了解到、反馈到学生目前学习的最新进展情况。学生出现了问题,没关系,这正是教学的切入点,是教师“点”和“导”的最佳时机。通过学生的合作学习和教师的引导、启发、帮助,学生必将成为课堂的真正主人。为了让学生真正成为课堂的主人,在数学教学过程中,对于学生的提问,教师不必作直接的详尽的解答,只对学生作适当的启发提示,让学生自己去动手动脑,找出答案,以便逐步培养学生自主学习的能力,养成他们良好的自学习惯。课上教师应该做到三个“不”:学生能自己说出来的,教师不说;学生能自己学会的,教师不讲;学生能自己做到的,教师不教。尽可能地提供多种机会让学生自己去理解、感悟、体验,从而提高学生的数学认识,激发学生的数学情感,促进学生数学水平的提高。四、新课程标准下数学教学过程强调教师的组织性和协调性新课程标准下教师已经不再是单纯地传授知识,而是帮助学生吸收、选择和整理信息,带领学生去管理人类已形成和发展的认识成果,激励他们在继承基础上加发发展;教师不单是一个学者,精通自己的学科知识,而且是学生的导师,指导学生发展自己的个性,督促其自我参与,学会生存,成才成人。教师的劳动不再是机械的重复,不再是在课堂上千篇一律的死板讲授,代之而行的是主持和开展种种认知性学习活动,师生共同参与探讨数学的神奇世界;新课程标准下的教师也不再是学生知识的唯一源泉,而是各种知识源泉的组织者、协调者,他们让学生走出校门,感受社会和整个教育的文化。可以说,促进人的发展,促进文化和科学技术的发展,促进社会生产的发展,这是新课程标准下数学教师的根本任务著名心理学家皮亚杰认为“科学知识永远在演进中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 主体责任合同范本
- 煤碳采购合同范本
- 《运筹学》期末复习及答案
- 税务代理协议书示例
- 农业绿色发展2025:政策导向与技术应用在农业废弃物资源化利用中的突破
- 农产品深加工产业园区2025年产业布局与区域经济影响研究报告
- 蒲公英科普考试题及答案
- 2025年液压传动试卷及答案
- 2025年山西省晋中市事业单位工勤技能考试考试题库及参考答案
- 纪检监察新质生产力风险因素
- 2025年交通安全知识测试题含答案详解
- 露天矿山项目资金预算与成本控制
- 2025年注册安全工程师考试(初级)安全生产法律法规试题及答案
- (正式版)DB15∕T 2590.1-2022 《毛茛科草种质资源描述和数据采集规范 第1部分:金莲花》
- 人教版(2024)八年级上册数学13.2.2 三角形的中线、角平分线、高 教案
- 电机电路安全知识培训课件
- 13.2.1三角形的边 教案 人教版数学八年级上册
- 2025年征兵考试题目及答案
- 2025年药店继续教育培训试题(附答案)
- 电焊工安全教育培训试题及答案
- 特种设备安全监察员考试试题及答案
评论
0/150
提交评论