




免费预览已结束,剩余53页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
JKDFHJDSHFJKHSDJKFH DDK SLFHALDSFJ DSHF摘 要 随着时代的进步和发展,单片机技术已经普及到生活、工作、科研等各个领域,已经成为一种比较成熟的技术。本文将介绍一种基于单片机控制的数字温度计和数字钟,本数字温度计属于多功能温度计,可以任意设置温度的上下限报警功能,当温度不在设定范围内时,可以报警;本数字钟可以同步显示时间日历,日期和时间都可通过按键校整。本系统采用的DS1302可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。本系统显示部分采用LCD液晶显示屏显示,工作方便,外形美观。关键词:单片机AT89S51;LCD1602;DS18B20;DS1302。 AbstractWith the era of progress and development, single-chip technology has spread to live, work, research and other fields, has become a relatively mature technology. This paper will introduce a single-chip microcomputer-based control of digital thermometer and digital clock, the digital thermometer are multi-purpose thermometer, you can arbitrarily set the upper and lower limits of temperature alarm function, when the temperature range is not set, it could be reported; the digital clock can synchronize the calendar shows the time, date and time can be through the whole school keys. The system uses the DS1302 can provide programmable power-down to protect the charging function, and can turn off the charging function. Part of the system showed that the use of LCD liquid crystal display screen, can work through the key switch interface to facilitate the work of beautiful appearance.Key words: Single Chip AT89S51;LCD1602; DS18B20; DS1302。第一章 前言1.1 研究背景随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它给人带来的方便是不可否定的,其中数字温度计和数字钟就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活提供更好的更方便的设施就需要从单片机技术入手,一切向着数字化、智能化控制的方向发展。1.2 研究意义随着现代信息技术的飞速发展和传统工业改造的逐步实现能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。与传统的温度计相比,这里设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。选用AT89C51型单片机作为主控制器件,DSl8B20作为测温传感器,通过LCD1602液晶显示器实现温度显示。通过DSl8B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0100最大线性偏差小于0.1。该器件可直接向单片机传输数字信号,便于单片机处理及控制。另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。目前常用的实时时钟,很多采用单片机的中断服务来实现,这种方式一方面需要采用计数器,占用硬件资源,另一方面需要设置中断、查询等,同样耗费单片机的资源,而且某些测控系统可能不允许;有的则使用并行接口的时钟芯片,如MC146818、DS12887等,它们虽然能满足单片机系统对实时时钟的要求,但是这些芯片与单片机接口复杂,占用地址、数据总线多,芯片体积大,占用空间多,给其它设计带来诸多不便。本设计选取串行接口时钟芯片DS1302与单片机同步通信构成数字时钟电路。DS1302 是美国DALLAS公司推出的一种高性能、低功耗、带RAM的实时时钟电路,它可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能,工作电压为2.5V5.5V,其简单的三线接口能为单片机节省大量资源,DS1302的后背电源及对后背电源进行涓细电流充电的能力保证电路断电后仍能保存时间和数据信息等。这些优点解决了目前常用的实时时钟所无法解决的问题。该时钟电路强大的功能和优越的性能,在很多领域的应用中,尤其是某些自动化控制、长时间无人看守的测控系统等对时钟精确性和可靠性有较高要求的场合,具有很高的使用价值。本文所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确度高,其输出温度采用数字显示,主要适用于对测温要求比较准确的场所或科研实验室;本文所介绍的数字钟采用了低功耗实时时钟电路DS1302,它可以对年、月、日、周、时、分、秒进行计时,且具有闰年补偿等多种功能。同时可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。本系统选用低功耗、高性能CMOS 8位微控制器AT89S51作为控制核心,采用温度传感器DS18B20准确测量温度,采用液晶显示屏LCD1602显示实时温度和同步的时间日历。 经过反复测试,本系统能准确完成各项功能。JDSHFKLDHFKDSH FJHDSAF JDSHFL DSHFLK ASHLFDSJK 第二章 方案论证2.1系统总体设计方案论证2.1.1方案一采用热敏电阻的感温效应测量温度,采用LED数码管显示实时温度和同步的时间日历。本系统的测温电路可使用热敏电阻之类的器件利用其感温效应,将随被测温度变化的电压值或电流值进行采集,经过A/D转换后用单片机进行数据处理,然后用LED数码管将被测温度显示出来。这种设计方案需要用到A/D转换电路,其感温电路比较繁杂,采用LED数码管显示时间日历至少需要8位数码管,显示电路繁杂,能量损耗大。2.1.2方案二 采用温度传感器DS18B20测量温度,采用LCD液晶显示屏显示实时温度和同步的时间日历。本系统可考虑选用一只温度传感器DS18B20,DS18B20不仅可以很容易直接读取被测温度值进行显示,而且温度传感器DS18B20具有独特的一线接口,只需要一条口线就可多点通信,无需外部元件,简化了分布式温度传感应用。本系统采用液晶显示屏LCD1602显示实时温度和同步的时间日历,电路简单,功耗低,显示信息量大,显示质量高,显示界面美观、友好,可以很好的满足设计要求。综上所述,方案一的感温电路和显示电路设计繁杂,能量损耗大;方案二的设计电路简单,显示界面美观、友好,并且软件设计也比较简单,所以本系统选用方案二实现实时温度和同步的时间日历的显示功能。2.2系统总体设计框图本系统由主控模块、时钟模块、显示模块、测温模块共4个模块组成。主控芯片使用89系列的AT89C51单片机。时钟芯片使用DS1302, DS1302做为计时芯片,可以做到及时准确。DS1302可以在很小电流的后备电源(2.55.5V电源,在2.5V时耗小于300nA)下继续计时,并可编程选择多种充电电流来对后备电源进行慢速充电,可以保证后备电源基本不耗电。测温模块采用DS18B20,具有测温准确,测温范围宽,电路简单的优点。显示模块采用液晶显示屏LCD1602,LCD1602电路简单,功耗低,显示信息量大,显示质量高,显示界面美观、友好。数字温度计和数字钟电路的总体设计方框图如图1所示。主 控 制 器LCD显 示温 度 传 感 器单片机复位DS1302掉电保护电路 图1 总体设计方框图2.3 主控制器AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,AT89S51在众多嵌入式控制应用系统中得到广泛应用。单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用,系统可用二节电池供电。2. 3.1 主要性能特点1、4k Bytes Flash片内程序存储器; 2、128 bytes的随机存取数据存储器(RAM); 3、32个外部双向输入/输出(I/O)口; 4、5个中断优先级、2层中断嵌套中断; 5、6个中断源; 6、2个16位可编程定时器/计数器; 7、2个全双工串行通信口; 8、看门狗(WDT)电路; 9、片内振荡器和时钟电路; 10、与MCS-51兼容; 11、全静态工作:0Hz-33MHz; 12、三级程序存储器保密锁定; 13、可编程串行通道; 14、低功耗的闲置和掉电模式。2.3.2 管脚说明 VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/ 地址的低八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。 P3口也可作为AT89C51的一些特殊功能口,如下表所示: 口管脚 备选功能 P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 /INT0(外部中断0) P3.3 /INT1(外部中断1) P3.4 T0(记时器0外部输入) P3.5 T1(记时器1外部输入) P3.6 /WR(外部数据存储器写选通) P3.7 /RD(外部数据存储器读选通) P3口同时为闪烁编程和编程校验接收一些控制信号。 RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。 ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。 /PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。 /EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。 XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。 XTAL2:来自反向振荡器的输出。2.4 显示电路LCD1602液晶显示器以其微功耗、体积小、显示内容丰富、超薄轻巧的诸多优点,在袖珍式仪表和低功耗应用系统中得到越来越广泛的应用。字符型液晶模块LCD1602是一种用 5x7 点阵图形来显示字符的液晶显示器,根据显示的容量可以分为 1 行 16 个字、2 行 16 个字。2.4.1 LCD1602的接口定义显示电路采用液晶显示屏LCD1602进行显示,单片机从P0口传输温度和时间数据驱动LCD1602进行显示。LCD1602的接口定义如表1所示。表1 LCD1602的接口定义引脚号标识说明PIN1GND接0VPIN2VCC接4.8V-5VPIN3V0对地接电阻470-2KPIN4RSRS=0,指令寄存器;RS=1,数据寄存器PIN5R/WR/W=0,写;R/W=1,读PIN6E允许信号PIN7D0数据0PIN8D1数据1PIN9D2数据2PIN10D3数据3PIN11D4数据4PIN12D5数据5PIN13D6数据6PIN14D7数据7PIN15LED+背光正极,接4.8V - 5VPIN16LED-背光负极,接0V2.4.2 LCD1602显示字符原理( 1 ) 线段的显示点阵图形式液晶由M*N个显示单元组成,假设LCD显示屏有64行,每行有128列,每8列对应1字节的8位,即每行由16字节,共16*8=128个点组成,屏上64*16个显示单元与显示RAM区1024字节相对应,每一字节的内容和显示屏上相应位置的亮暗对应。例如屏的第一行的亮暗由RAM区的00H00FH的16字节的内容决定,当(000)=FFH时,如屏的左上角显示一条短亮线,长度为8个点;当(3FFH)=FFH时,则显示屏的右下角显示一条短亮线;当(000H)=FFH,(001H)=00H,(002H)=FFH,(003H)=00H,(00EH)=FFH,(00FH)=00H时,则在屏的顶部显示一条由8段亮线和8段暗线组成的虚线。( 2 ) 字符的显示用LCD显示一个字符时比较复杂,因为一个字符由6*8或8*8点阵组成,既要找到和显示屏上某几个位置对应的显示RAM区的8字节,还要使每字节的不同的位为“1”,其它的为“0”,为“1”的点亮,为“0”的不亮,这样就组成某个字符。但若内带字符发生器则可工作在文本方式,根据行列号及每行的列数找出对应RAM地址,光标处送上字符对应的代码即可。2.4.3 LCD1602指令1602模块的设定,读写,与光标控制都是通过指令来完成,共有11条指令,如下:表2 LCD1602指令表指令RSRWD7D6D5D4D3D2D1D01清屏00000000012光标返回000000001*3输入模式00000001I/DS4显示控制0000001DCB5光标/字符移位000001S/CR/L*6功能00001DLNF*7置字符发生器地址0001字符发生存贮器地址8置数据存贮器地址001显示数据存贮器地址9读忙标志和地址01BF计数器地址10写数据到指令7.8所设地址10要写的数据11从指令7.8所设的地址读数据11读出的数据指令说明如下:指令1:清显示,光标复位到地址00H位置。指令2:光标复位,光标返回到地址00H。指令3:光标和显示模式设置 I/D:光标移动方向,高电平右移,低电平左移,S:屏幕上所有文字是否左移或者右移。高电平表示有效,低电平则无效。指令4:显示开关控制。 D:控制整体显示的开与关,高电平表示开显示,低电平表示关显示 C:控制光标的开与关,高电平表示有光标,低电平表示无光标 B:控制光标是否闪烁,高电平闪烁,低电平不闪烁。指令5:光标或显示移位 S/C:高电平时移动显示的文字,低电平时移动光标。R/L,高向左,低向右。指令6:功能设置命令 DL:高电平时为4位总线,低电平时为8位总线 N:低电平时为单行显示,高电平时双行显示 F: 低电平时显示5x7的点阵字符,高电平时显示5x10的点阵字符。(有些模块是 DL:高电平时为8位总线,低电平时为4位总线)指令7:字符发生器RAM地址设置,地址:字符地址*8+字符行数。(将一个字符分成5*8点阵,一次写入一行,8行就组成一个字符)指令8:置显示地址,第一行为:00H0FH,第二行为:40H4FH。指令9:读忙信号和光标地址 BF:为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。指令10:写数据。指令11:读数据。2.5 温度传感器DS18B20温度传感器DS18B20是一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,能直接读出被测温度,并且可根据实际要求通过简单的编程实现912位的数字值读数方式。DS18B20具有独特的单线接口,仅需一个端口引脚进行通信,并且多个DS18B20可并联在惟一的三线上,实现多点组网功能;用户还可根据需要定义报警设置,十分方便。DS18B20具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。2.5.1 DS18B20的主要特性DS18B20的主要特性 :1、适应电压范围更宽,电压范围:3.05.5V,在寄生电源方式下可由数 据线供电 2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯 3、 DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温 4、DS18B20在使用中不需要任何外围元件,全部 传感元件及转换电路集成在形如一只三极管的集成电路内 5、温范围55+125,在-10+85时精度为0.5 6、可编程 的分辨率为912位,对应的可分辨温度分别为0.5、0.25、0.125和0.0625,可实现高精度测温 7、在9位分辨率时最多在 93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快 8、测量结果直接输出数字温度信号,以一 线总线串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力 .9、负压特性:电源极性接反时,芯片不会因发热而烧毁, 但不能正常工作2.5.2 DS18B20内部结构DS18B20采用3脚PR35封装或8脚SOIC封装,其内部结构框图如图2所示。C64位ROM和单线接口高速缓存存储器控制逻辑辑辑温度传感器高温触发器TH低温触发器TL配置寄存器8位CRC发生器VddI/O 图2 图2 DS18B20内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625/LSB形式表达,其中S为符号位。 这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。 例如+125的数字输出为07D0H,+25.0625的数字输出为0191H,-25.0625的数字输出为FF6FH,-55的数字输出为FC90H。 DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。 暂存存储器包含了8个连续字节,前两个字节是测得的温度信息,第一个字节的内容是温度的低八位,第二个字节是温度的高八位。第三个和第四个字节是TH、TL的易失性拷贝,第五个字节是结构寄存器的易失性拷贝,这三个字节的内容在每一次上电复位时被刷新。第六、七、八个字节用于内部计算。第九个字节是冗余检验字节。 该字节各位的意义如下:TM R1 R0 1 1 1 1 1低五位一直都是1 ,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动。R1和R0用来设置分辨率,如表3所示:(DS18B20出厂时被设置为12位) 表3 DS18B20温度转换时间表R1R0分辨率/位温度最大转换时间00993.750110187.510113751112750温度报警触发器TH和TL,可通过软件写入户报警上下限。高速暂存RAM为8字节的存储器,结构如图3所示。图3 DS18B20字节定义当DS18B20接收到温度转换命令后,开始启动转换。单片机通过单线接口读出该数据,读数据时低位在前,高位在后,数据格式以0.0625LSB形式表示。当符号位S0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。表4是一部分温度值对应的二进制温度数据。表4一部分温度对应值表温度/二进制表示十六进制表示+1250000 0111 1101 000007D0H+850000 0101 0101 00000550H+25.06250000 0001 1001 00000191H+10.1250000 0000 1010 000100A2H+0.50000 0000 0000 00100008H00000 0000 0000 10000000H-0.51111 1111 1111 0000FFF8H-10.1251111 1111 0101 1110FF5EH-25.06251111 1110 0110 1111FE6FH-551111 1100 1001 0000FC90HDS18B20完成温度转换后,把测得的温度值与RAM中的TH、TL内容作比较。若TTH或TTL,则将该器件内的报警标志位置位,并响应主机发出的报警搜索命令。2.5 .3 DS18B20测温原理图4中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。图中还隐藏着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将55所对应的一个基数分别置入减法计数器1和温度寄存器中,计数器1和温度寄存器被预置在55所对应的一个基数值。 图4 DS18B20测温原理图减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数。如此循环直到减法计数器2计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。图4中的斜率累加器的输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作按协议进行。操作协议为:初使化DS18B20(发复位脉冲)发ROM功能命令发存储器操作命令处理数据。2.5.4 DS18B20引脚定义及其指令集 DS18B20引脚定义:(1)DQ为数字信号输入/输出端; (2)GND为电源地;(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。DS18B20引脚封装如图5:图5 DS18B20引脚封装根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行 复位操作,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后 释放,当DS18B20收到信号后等待1660微秒左右,后发出60240微秒的存在低脉冲,主CPU收到此信号表示复位成功。以下DS18B20的主要指令。DS18B20指令表:表5 ROM指令表指 令 约定代码功 能读ROM33H读DS1820温度传感器ROM中的编码(即64位地址) 符合 ROM 55H发出此命令之后,接着发出 64 位 ROM 编码,访问单总线上与该编码相对应的 DS1820 使之作出响应,为下一步对该 DS1820 的读写作准备。 搜索 ROM 0FOH用于确定挂接在同一总线上 DS1820 的个数和识别 64 位 ROM 地址。为操作各器件作好准备。 跳过 ROM 0CCH忽略 64 位 ROM 地址,直接向 DS1820 发温度变换命令。适用于单片工作。 告警搜索命令 0ECH执行后只有温度超过设定值上限或下限的片子才做出响应。 表6 RAM指令表指 令 约定代码功 能温度变换44H启动DS1820进行温度转换,12位转换时最长为750ms(9位为93.75ms)。结果存入内部9字节RAM中。 读暂存器 0BEH 读内部RAM中9字节的内容 写暂存器 4EH 发出向内部RAM的3、4字节写上、下限温度数据命令,紧跟该命令之后,是传送两字节的数据。 复制暂存器 48H 将RAM中第3 、4字节的内容复制到EEPROM中。 重调 EEPROM 0B8H 将EEPROM中内容恢复到RAM中的第3 、4字节。 读供电方式 0B4H 读DS1820的供电模式。寄生供电时DS1820发送“ 0 ”,外接电源供电 DS1820发送“ 1 ”。 2.5.5 DS1820使用中注意事项 DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题: 较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此 ,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对 DS1820操作部分最好采用汇编语言实现。 在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个 DS1820,在实际应用中并非如此。当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时 要加以注意。 连接DS1820的总线电缆是有长度限制的。试验中,当采用普通信号电缆传输长度超过50m时,读取的 测温数据将发生错误。当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正 常通讯距离进一步加长。这种情况主要是由总线分布电容使信号波形产生畸变造成的。因此,在用DS1820进行长距离测温系统设计时要充分考 虑总线分布电容和阻抗匹配问题。在DS1820测温程序设计中,向DS1820发出温度转换命令后,程序总要等待DS1820的返回信号,一旦 某个DS1820接触不好或断线,当程序读该DS1820时,将没有返回信号,程序进入死循环。这一点在进行DS1820硬件连接和软件设计时也要给予 一定的重视。 测温电缆线建议采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一组接VCC和地线,屏蔽层在源端单点接地。2.6 DS1302时钟芯片传统的数据记录方式是隔时采样或定时采样,没有具体的时间记录,因此只能记录数据而无法准确记录其出现的时间。低功耗时钟芯片DS1302可以对年、月、日、周、时、分、秒进行计时,且具有闰年补偿等多种功能。同时可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。DS1302内部结构图如图6所示。 图6 DS1302内部结构2.6.1引脚功能及结构 DS1302的引脚排列,其中Vcc1为后备电源,VCC2为主电源。在主电源关闭的情况下,也能保持时钟的连续运行。DS1302由Vcc1或Vcc2两者中的较大者供电。当Vcc2大于Vcc10.2V时,Vcc2给DS1302供电。当Vcc2小于Vcc1时,DS1302由Vcc1供电。X1和X2是振荡源,外接32.768kHz晶振。RST是复位/片选线,通过把RST输入驱动置高电平来启动所有的数据传送。RST输入有两种功能:首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供终止单字节或多字节数据的传送手段。当RST为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。如果在传送过程中RST置为低电平,则会终止此次数据传送,I/O引脚变为高阻态。上电运行时,在Vcc2.5V之前,RST必须保持低电平。只有在SCLK为低电平时,才能将RST置为高电平。I/O为串行数据输入输出端(双向), SCLK始终是输入端。2.6.2 DS1302的工作原理DS1302工作时为了对任何数据传送进行初始化,需要将复位脚(RST)置为高电平且将8位地址和命令信息装入移位寄存器。数据在时钟(SCLK)的上升沿串行输入,前8位指定访问地址,命令字装入移位寄存器后,在之后的时钟周期,读操作时输出数据,写操作时输出数据。时钟脉冲的个数在单字节方式下为8+8(8位地址+8位数据),在多字节方式下为8加最多可达248的数据。2.6.3 DS1302的寄存器和控制命令对DS1302的操作就是对其内部寄存器的操作,DS1302内部共有12个寄存器,其中有7个寄存器与日历、时钟相关,存放的数据位为BCD码形式。此外,DS1302还有年份寄存器、控制寄存器、充电寄存器、时钟突发寄存器及与RAM相关的寄存器等。时钟突发寄存器可一次性顺序读写除充电寄存器以外的寄存器。日历、时间寄存器及控制字如表1所示:表7 日历、时钟寄存器与控制字对照表寄存器名称765432101RAM/CKA4A3A2A1A0RD/W秒寄存器1000000分寄存器1000001小时寄存器1000010日寄存器1000011月寄存器1000100星期寄存器1000101年寄存器1000110写保护寄存器1000111慢充电寄存器1001000时钟突发寄存器1011111最后一位RD/W为“0”时表示进行写操作,为“1”时表示读操作。DS1302内部寄存器列表如表2所示:表8 DS1302内部主要寄存器分布表寄存器名称命令字取值范围各位内容写读76543210秒寄存器80H81H00-59CH10SECSEC分寄存器82H83H00-59010MINMIN小时寄存器84H85H01-12或00-2312/240AHRHR日期寄存器86H87H01-28,29,30,310010DATEDATE月份寄存器88H89H01-1200010MMONTH周寄存器8AH8BH01-0700000DAY年份寄存器8CH8DH00-9910YEARYEARDS1302内部的RAM分为两类,一类是单个RAM单元,共31个,每个单元为一个8位的字节,其命令控制字为COHFDH,其中奇数为读操作,偶数为写操作;再一类为突发方式下的RAM,此方式下可一次性读写所有的RAM的31个字节,命令控制字为FEH(写)、FFH(读)。我们现在已经知道了控制寄存器和RAM的逻辑地址,接着就需要知道如何通过外部接口来访问这些资源。单片机是通过简单的同步串行通讯与DS1302通讯的,每次通讯都必须由单片机发起,无论是读还是写操作,单片机都必须先向DS1302写入一个命令帧,这个帧的格式如表1所示,最高位BIT7固定为1,BIT6决定操作是针对RAM还是时钟寄存器,接着的5个BIT是RAM或时钟寄存器在DS1302的内部地址,最后一个BIT表示这次操作是读操作抑或是写操作。物理上,DS1302的通讯接口由3个口线组成,即RST,SCLK,I/O。其中RST从低电平变成高电平启动一次数据传输过程,SCLK是时钟线,I/O是数据线。具体的读写时序参考图5,但是请注意,无论是哪种同步通讯类型的串行接口,都是对时钟信号敏感的,而且一般数据写入有效是在上升沿,读出有效是在下降沿(DS1302正是如此的,但是在芯片手册里没有明确说明),如果不是特别确定,则把程序设计成这样:平时SCLK保持低电平,在时钟变动前设置数据,在时钟变动后读取数据,即数据操作总是在SCLK保持为低电平的时候,相邻的操作之间间隔有一个上升沿和一个下降沿。图7 DS1302的命令字结构第三章 系统整体硬件电路系统整体硬件电路包括:单片机主板电路,传感器数据采集电路,时钟芯片电路,温度和时间显示电路。 3.1 主板电路 图8 单片机主板电路如图8所示,单片机主板电路中有三个独立式按键可以调整温度计的上下限报警设置和数字钟时间校准,液晶显示屏LCD1602显示报警提示信息温度和日历时间,这时可以调整报警上下限,测出被测的温度值。单片机主板电路中的按健复位电路是上电复位加手动复位,使用比较方便,在程序跑飞时,可以手动复位,这样就不用在重起单片机电源,就可以实现复位。3.2 DS18B20与单片机的接口电路DS18B20可以采用两种方式供电,一种是采用外部电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源,如图9。另一种是寄生电源供电方式,如图10 所示,单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管完成对总线的上拉。 外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度 监控系统。开发中使用外部电源供电方式,毕竟比寄生电源方式只多接一根VCC引线。在外接电源方式下, 可以充分发挥DS18B20宽电源电压范围的优点,即使电源电压VCC降到3V时,依然能够保证温度量精度。在外部电源供电方式下,DS18B20工作电源由VDD引脚接入,此时I/O线不需要强上拉,不存在电源电流不足的问题,可以保证 转换精度,同时在总线上理论可以挂接任意多个DS18B20传感器,组成多点测温系统。在寄生电源供电方式下,DS18B20从单线信号线上汲取能量:在信号线DQ处于高电平期间把能量储存在内部 电容里,在信号线处于低电平期间消耗电容上的电能工作,直到高电平到来再给寄生电源(电容)充电。 独特的寄生电源方式有三个好处: (1)进行远距离测温时,无需本地电源 (2)可以在没有常规电源的条件下读取ROM (3)电路更加简洁,仅用一根I/O口实现测温当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。采用寄生电源供电方式时VDD端接地。由于单线制只有一根线,因此发送接口必须是三态的。图9 DS18B20外部电源供电方式图10 DS18B20寄生电源供电方式3.3 DS1302时钟芯片电路实时时钟电路DS1302是一种具有涓细电流充电能力的电路,采用32.768kHz晶振,可为掉电保护电源提供可编程的充电功能。DS1302实时时钟电路如图11和图12所示。图11 DS1302电容充电电路图12 DS1302后备外部电源电路3.4 温度时钟显示电路显示电路采用液晶显示屏LCD1602进行显示,单片机从P0口传输温度和时间数据驱动LCD1602进行显示,LCD1602与单片机的接口电路简单,LCD接口定义见表1。显示电路如图13。图14 温度时钟显示电路3.5 系统整体硬件电路 如图14,系统硬件电路主要有4部分组成,单片机主板电路中的按健复位电路是上电复位加手动复位方式,DS1302使用两个1.5伏外部电源为后备电 接到VCC1,主电源+5伏接VCC2 ,RST接平p1.5,SLK接p1.7,I/ O接p1.6。DS18B20采用外部电源供电方式。用p0口驱动LCD1602液晶显示屏。 图14 系统整体硬件电路第四章 系统软件设计系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,延时程序,时间调节按键子程序,DS1302时钟芯片写入一字节子程序,读DS1302时钟芯片子程序,LCD1602液晶显示子程序等。4.1主程序主程序的主要功能是负责温度和时间日历的实时显示,读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次被测温度,其程序流程见图10所示。初始化调用显示子程序1S到?初次上电读温度值并处理显示数据刷新、显示时间日历发温度转换开始命令NYNY 图14 主程序流程图 4.2读出温度子程序读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。其程序流程图如上图图11所示。Y发DS18B20复位命令发跳过ROM命令发读取温度命令读取操作,CRC校验9字节完?CRC校验正?确?移入温度暂存器结束NNY图15 读温度流程图4.3温度转换命令子程序温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手指谣小熊猫课件
- 红色旅游教育功能分析-洞察及研究
- 次卡协议书5篇
- 人教版四年级数学上学期第6单元除数是两位数的除法综合素养评价卷(含答案)
- 吉林省白城市通榆县育才学校2024-2025学年八年级下学期4月月考生物试题(含答案)
- 学生食品安全培训教育课件
- 手扶梯使用安全培训课件
- 2025-2026学年安徽省安庆市太湖县五校联考九年级(上)开学英语试卷(含答案)
- 工程咨询国际化竞争-洞察及研究
- 模块化设计质量策略-洞察及研究
- 2025贵州省贵阳市殡仪服务中心公开招聘(编外)工作人员25人考试参考试题及答案解析
- 2025年国家安全知识竞赛试卷(答案+解析)
- 2025年贵州省凯里市辅警招聘考试题题库(含参考答案)
- 2025年四川基层法律服务工作者执业核准考试复习题及答案二
- 2025年全国企业员工全面质量管理知识竞赛题库(含答案)
- 大数据产业课件
- 潮汐能发电站课件
- 化妆详细教程课件
- 良好学习习惯养成课件
- 国庆司机安全培训
- 排球《正面上手发球》教案
评论
0/150
提交评论