指数函数与对数函数的关系(反函数)ppt课件_第1页
指数函数与对数函数的关系(反函数)ppt课件_第2页
指数函数与对数函数的关系(反函数)ppt课件_第3页
指数函数与对数函数的关系(反函数)ppt课件_第4页
指数函数与对数函数的关系(反函数)ppt课件_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

指数函数与对数函数的关系 问题1 指数函数y ax与对数函数y logax a 0 a 1 有什么关系 对应法则互逆 y ax x logay y logax 指数换对数 交换x y 指数函数y ax与对数函数x logay a 0 a 1 有什么关系 称这两个函数互为反函数 对应法则互逆 指数函数y ax是对数函数x logay a 0 a 1 的反函数 指数函数y ax a 0 a 1 对数函数y logax a 0 a 1 观察在同一坐标系内函数y log2x与函数y 2x的图像 分析它们之间的关系 函数y log2x的图像与函数y 2x的图像关于直线y x对称 1 0 0 1 函数y f x 的图像和它的反函数的图像关于直线y x对称 1 当一个函数是一一映射时 可以把这个函数的因变量作为一个新的函数的自变量 而把这个函数的自变量作为新的函数的因变量 我们称这两个函数互为反函数 2 对数函数y logax与指数函数y ax互为反函数 图象关于直线y x对称 3 函数y f x 的反函数通常用y f 1 x 表示 注意 y f 1 x 读作 f逆x 表示反函数 不是 1次幂 倒数 的意思 例1写出下列对数函数的反函数 1 y lgx 解 1 对数函数y lgx 它的底数是它的反函数是指数函数 10 y 10 x 它的反函数是指数函数 例2写出下列指数函数的反函数 1 y 5x 解 1 指数函数y 5x 它的底数是5它的反函数是对数函数y log5x 2 指数函数 它的底数是 它的反函数是对数函数 练习 1 说出下列各组函数之间的关系 1 y 10 x和y lgx 2 y 2x和y log2x 3 y ex和y lnx 互为反函数 定义域和值域互换 对应法则互逆 练习 2 写出下列对数函数的反函数 1 y log2 5x 2 y log x 3 写出下列指数函数的反函数 1 y 4x 2 y 1 4x 1 y 2 5x 2 y x 1 y log4x 2 y log1 4x 例3求函数 3 2 R 反函数 并在同一直角坐标系中作出函数及其反函数的图象 解 由 3 2 R 得 所以 2 1 R 的反函数是 R 3 2经过两点 0 2 2 3 0 经过两点 2 0 0 2 3 做一做 3 2 想一想 函数 3 2的图象和它的反函数 的图象之间有什么关系 求函数反函数的步骤 3 求原函数的值域 1 反解 2 x与y互换 4 写出反函数及它的定义域 b f a a f 1 b 点 b a 在反函数y f 1 x 的图像上 点 a b 在函数y f x 的图像上 结论 例4 函数f x loga x 1 a 0且a 1 的反函数的图象经过点 1 4 求a的值 解 依题意 得 理论迁移 例4已知函数 1 求函数f x 的定义域和值域 2 求证函数y f x 的图象关于直线y x对称 小结 反函数的概念 定义域和值域互换对应法则互逆图像关于直线y x对称 指数函数y ax a 0 a 1 与对数函数y logax a 0 a 1 互为反函数 作业 课本第106页练习A组B组 对数函数y logax a 0 a 1 指数函数y ax a 0 a 1 4 a 1时 a越大图像越靠近y轴 0 a 1时 a越小图像越靠近y轴 4 a 1时 a越大图像越靠近x轴 0 a 1时 a越大图像越靠近x轴 5 a 1时 在R上是增函数 0 a 1时 在R上是减函数 5 a 1时 在 0 是增函数 0 a 1时 在 0 是减函数 3 过点 0 1 即x 0时 y 1 3 过点 1 0 即x 1时 y 0 2 值域 0 1 定义域 R 1 定义域 0 2 值域 R y ax a 1 y ax 0 a 1 x y o 1 y logax a 1 y logax 0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论