




已阅读5页,还剩91页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CMOS模拟集成电路分析与设计 主讲教师 吴建辉Tel 83795677E mail wjh 教材及参考书 教材 吴建辉编著 CMOS模拟集成电路分析与设计 第二版 电子工业出版社 参考书 RazaviB DesignofanalogCMOSintegratedcircuitsAllenPE CMOSAnalogCircuitDesignR JacobBaker CMOSMixed SignalCircuitDesign 引言 模拟电路与模拟集成电路CMOS工艺 先进工艺下模拟集成电路的挑战 课程主题与学习目标 模拟电路与模拟集成电路 分立元件音频放大电路集成音频放大电路 半导体材料 衬底 有源器件特性 现代主要集成电路工艺 采用CMOS工艺的原因 低功耗 高容量的数字集成电路驱动易于与高密度的数字集成电路集成 BiCMOS太贵 先进工艺下模拟集成电路的挑战 CMOS工艺的发展以特征尺寸的缩小为显著特征 低功耗高性能的数字电路需求是促进CMOS工艺发展的主要动力先进工艺对模拟电路存在着明显的优势与劣势 主要优势 低功耗 高频率主要劣势 低摆幅 低本征增益 工艺偏差对电路的显著影响 相互干扰等对策 数字辅助等 课程主题 MOS器件物理单级放大器电流镜差分对放大器的频率特性运算放大器与跨导放大器反馈 稳定性及补偿电子噪声等 学习目标 较深入理解与模拟设计相关的MOS器件特性建立模拟电路设计中限制与折中的概念学会构架一座复杂器件模型 行为与基本的手算之间的桥梁掌握一种系统的而不是盲目 spice monkey 的设计方式通过一系列手算设计工程巩固以上知识 许多工业电路 应用的一个高性能反馈放大器的设计与优化 第一讲 基本MOS器件物理 本章主要内容 本章是CMOS模拟集成电路设计的基础 主要内容为 有源器件无源器件等比例缩小理论短沟道效应及狭沟道效应MOS器件模型 1 有源器件 主要内容 1 1几何结构与工作原理1 2极间电容1 3电学特性与主要的二次效应1 4低频及高频小信号等效模型1 5有源电阻 1 1MOS管几何结构与工作原理 1 MOS管是一个四端口器件栅极 G 栅氧下的衬底区域为有效工作区 即MOS管的沟道 源极 S 与漏极 D 在制作时是几何对称的 一般根据电荷的输入与输出来定义源区与漏区 源端被定义为输出电荷 若为NMOS器件则为电子 的端口 漏端则为收集电荷的端口 当该器件三端的电压发生改变时 源区与漏区就可能改变作用而相互交换定义 衬底 B 在模拟IC中还要考虑衬底 B 的影响 衬底电位一般是通过一欧姆p 区 NMOS的衬底 以及n 区 PMOS衬底 实现连接的 1 1MOS管几何结构与工作原理 2 MOS管的主要几何尺寸沟道长度L CMOS工艺的自对准特点 其沟道长度定义为漏源之间栅的尺寸 一般其最小尺寸即为制造工艺中所给的特征尺寸 由于在制造漏 源结时会发生边缘扩散 所以源漏之间的实际距离 称之为有效长度L 略小于长度L 则有L L 2d 其中L是漏源之间的总长度 d是边缘扩散的长度 沟道宽度W 垂直于沟道长度方向的栅的尺寸 栅氧厚度tox 则为栅极与衬底之间的二氧化硅的厚度 1 1MOS管几何结构与工作原理 3 MOS管可分为增强型与耗尽型两类 增强型是指栅源电压VGS为0时没有导电沟道 必须依靠栅源电压的作用 才能形成感生沟道 耗尽型是指即使在栅源电压VGS为0时也存在导电沟道 这两类MOS管的基本工作原理一致 都是利用栅源电压的大小来改变半导体表面感生电荷的多少 从而控制漏极电流的大小 1 1MOS管几何结构与工作原理 4 以增强型NMOS管为例 截止区 VGS 0源区 衬底和漏区形成两个背靠背的PN结 不管VDS的极性如何 其中总有一个PN结是反偏的 此时漏源之间的电阻很大 没有形成导电沟道 漏电流ID为0 亚阈值区 Vth VGS 0 1 1MOS管几何结构与工作原理 5 耗尽层 线性区 VGS Vth且VDS VGS Vth形成反型层 或称为感生沟道 感生沟道形成后 在正的漏极电压作用下产生漏极电流ID一般把在漏源电压作用下开始导电时的栅源电压叫做开启电压Vth外加较小的VDS ID将随VDS上升迅速增大 此时为线性区 但由于沟道存在电位梯度 因此沟道厚度是不均匀的注意 与双极型晶体管相比 一个MOS器件即使在无电流流过时也可能是开通的 1 1MOS管几何结构与工作原理 6 饱和区 VGS Vth且VDS VGS Vth当VDS增大到一定数值 VGD Vth 靠近漏端被夹断 VDS继续增加 将形成一夹断区 且夹断点向源极靠近 沟道被夹断后 VDS上升时 其增加的电压基本上加在沟道厚度为零的耗尽区上 而沟道两端的电压保持不变 所以ID趋于饱和 当VGS增加时 由于沟道电阻的减小 饱和漏极电流会相应增大 在模拟电路集成电路中饱和区是MOS管的主要工作区击穿区 若VDS大于击穿电压BVDS 二极管的反向击穿电压 漏极与衬底之间的PN结发生反向击穿 ID将急剧增加 进入雪崩区 此时漏极电流不经过沟道 而直接由漏极流入衬底 1 1MOS管几何结构与工作原理 7 MOS管的表示符号 1 1MOS管几何结构与工作原理 8 1 2MOS管的极间电容 1 本征栅电容 本征栅电容 本征电容指的是一些不能避免而在器件工作时必需考虑的电容 还要注意存在着大量的外在的与工艺相关的电容 按不同的工作区讨论本征栅电容 MOS管打开 线性区与饱和区MOS管 关断 截止区与亚阈值区 栅极与导电沟道构成一个平板电容 栅极 栅氧 沟道 即 CGC WL OX tox WLCOX可以将之视为集总电容 即 CGS CGD 1 2 CGC改变任一电压都将改变沟道电荷耗尽型电容CCB 沟道 耗尽层 衬底 形成了源极与漏极到衬底的电容 不过经常忽略 1 2MOS管的极间电容 1 本征栅电容 ON 假设长沟道模型 工作于饱和区时如改变源极电压 则有 在漏极端口的栅与沟道的电压差保持不变 Vth 但源极端口的电压差发生了改变 这意味着电容的 底板 不是均匀改变 详细的分析可以得到此时Cgs 2 3 WLCOX假设长沟道模型 工作于饱和区时如改变漏极电压则不会改变沟道电荷 即Cgd 0 忽略二次效应及外部电容 1 2MOS管的极间电容 1 本征栅电容 ON 不存在导电沟道 栅到衬底间的电容等效为栅氧电容与耗尽电容的串联 如果栅电压为负 则耗尽层变薄 栅与衬底间电容增大 对于大的负偏置 则电容接近于CGC 1 2MOS管的极间电容 1 本征栅电容 OFF 1 2MOS管的极间电容 1 栅与沟道之间的栅氧电容 C2 WLCox 其中Cox为单位面积栅氧电容 ox tox 沟道耗尽层电容 交叠电容 多晶栅覆盖源漏区所形成的电容 每单位宽度的交叠电容记为Col 栅源交叠电容C1 WCol栅漏交叠电容C4 WCol注 由于是环状的电场线 C1与C4不能简单地写成WdCox 需通过更复杂的计算才能得到 且它的值与衬底偏置有关 1 2MOS管的极间电容 2 源漏区与衬底间的结电容 Cbd Cbs漏源对衬底的PN结势垒电容一般由两部分组成 垂直方向 即源漏区的底部与衬底间 的底层电容Cj横向即源漏的四周与衬底间构成的圆周电容Cjs一般分别定义Cj与Cjs为单位面积的电容与单位长度的电容 而每一个单位面积PN结的势垒电容为 Cj0 零偏时单位面积结电容 与衬底浓度有关 VR 通过PN结的反偏电压 B PN结接触势垒差 一般取0 8V m 底面电容的梯度因子 0 3 0 4 源漏的总结电容可表示为 H 源 漏区的长度 W 源 漏区的宽度总的宽长比相同的情况下 采用并联结构 即H不变 而每一管的宽为原来的几分之一 则并联结构的MOS管的结电容比原结构小 1 2MOS管的极间电容 3 1 2MOS管的极间电容 4 MOS管的极间电容 1 2MOS管的极间电容 5 不同工作区的极间电容截止区 漏源之间不存在沟道栅源 栅漏之间的电容为 CGD CGS ColW栅与衬底间的电容为栅氧电容与耗尽区电容之间的串联 CGB WLCox Cd WLCox Cd L为沟道的有效长度在截止时 耗尽区电容较大 故可忽略 因此 CGB WLCoxCSB与CDB的值相对于衬底是源漏间电压的函数 1 2MOS管的极间电容 6 不同工作区的极间电容饱和区栅漏电容大约为 WCol漏端夹断 沟道长度缩短 从沟道电荷分布相当于CGS增大 CGD减小 栅与沟道间的电位差从源区的VGS下降到夹断点的VGS Vth 导致了在栅氧下的沟道内的垂直电场的不一致 可以证明这种结构除了过覆盖电容之外的电容值 2WLCox 3因此有 CGS 2WLCox 3 WCol当MOS管工作饱和区时 栅与衬底间的电容常被忽略 这是由于反型层在栅与衬底间起着屏蔽作用 也就是说如果栅压发生了改变 导电电荷的提供主要由源极提供而流向漏 而不是由衬底提供导电荷 1 2MOS管的极间电容 7 不同工作区的极间电容线性区漏源之间产生反型层并且沟道与衬底之间形成较厚的耗尽层 产生较小的耗尽层电容 此时栅极电容为 CGD CGS WLCox 2 WCol因为S和D具有几乎相等的电压 且栅电压变化 V就会使相同的电荷从源区流向漏区 则其栅与沟道间的电容WLCox等于栅源及栅漏间的电容 与工作于饱和区一样 在线性区时 栅与衬底间的电容常被忽略 1 2MOS管的极间电容 8 注意 在不同区域之间的转变不能由方程直接提供 只是根据趋势延伸而得 总结 1 3电特性与主要的二次效应 1 3 1电特性阈值电压I V特性输入输出转移特性跨导等电特性1 3 2二次效应MOS管的衬底效应沟道调制效应亚阈值导通温度效应 1 3 1MOS管的电特性 阈值电压 1 Vth定义为吸引到表面的电子的数量与掺杂原子的数量相等时所对应的VGS 主要是由表面电荷控制的 阈值电压 NMOS 在漏源电压的作用下刚开始有电流产生时的VG为阈值电压Vth MS 指多晶硅栅与硅衬底间的接触电势差称为费米势 其中q是电子电荷Nsub 衬底的掺杂浓度Qb 耗尽区的电荷密度 其值为 其中是硅的介电常数Cox 单位面积的栅氧电容 Qss 氧化层中单位面积的正电荷VFB 平带电压 VFB 1 3 1MOS管的电特性 阈值电压 2 阈值电压 PMOS 注意 器件的阈值电压主要通过改变衬底掺杂浓度 衬底表面浓度或改变氧化层中的电荷密度来调整 用以上方程求出的 内在 阈值在电路设计过程中可能不适用 在实际设计过程中 常通过改变多晶与硅之间的接触电势即 在沟道中注入杂质 或通过对多晶硅掺杂金属的方法来调整阈值电压 1 3 1MOS管的电特性 I V特性 1 输出特性 I V特性 MOS晶体管的输出电流 电压特性的经典描述是萨氏方程 忽略二次效应 对于NMOS管导通时的萨氏方程为 VGS Vth MOS管的 过驱动电压 记为VOV W L称为宽长比 L 指沟道的有效长度 称为NMOS管的导电因子 ID的值取决于 工艺参数 nCox 器件尺寸W和L VDS及VGS 1 3 1MOS管的电特性 I V特性 2 讨论 截止区 VGS Vth ID 0线性区 VDS VGS Vth 漏极电流即为萨氏方程深线性区 VDS 2 VGS Vth 萨氏方程可近似为 当VDS较小时 ID是VDS的线性函数 即这时MOS管可等效为一个电阻 其阻值为 深线性区的MOS管可等效为一个受过驱动电压控制的可控电阻 当VGS一定时 沟道直流导通电阻近似为一恒定的电阻 1 3 1MOS管的电特性 I V特性 3 讨论 续 饱和区 VDS VGS Vth漏极电流并不是随VDS增大而无限增大的 在VDS VGS Vth时 MOS管进入饱和区 此时在沟道中发生了夹断现象 萨氏方程两边对VDS求导 可求出当VDS VGS Vth时 电流有最大值 其值为 称为饱和萨氏方程 1 3 1MOS管的电特性 I V特性 4 MOS管I V特性曲线 1 3 1MOS管的电特性 转移特性 1 转移特性曲线在一个固定的VDS下的MOS管饱和区的漏极电流与栅源电压之间的关系称为MOS管的转移特性 转移特性的另一种表示方式 增强型NMOS转移特性 耗尽型NMOS转移特性 1 3 1MOS管的电特性 转移特性 2 转移特性曲线在实际应用中 生产厂商经常为设计者提供的参数中 经常给出的是在零电流下的开启电压注意 Vth0为无衬偏时的开启电压 而是在与VGS特性曲线中与VGS轴的交点电压 实际上为零电流的栅电压从物理意义上而言 为沟道刚反型时的栅电压 仅与沟道浓度 氧化层电荷等有关 而Vth0与人为定义开启后的IDS有关 1 3 1MOS管的电特性 转移特性 3 转移特性曲线从转移特性曲线可以得到导电因子KN 或KP 根据饱和萨氏方程可知 即有 所以KN即为转移特性曲线的斜率 1 3 1MOS管的电特性 直流电阻 MOS管的直流导通电阻定义 MOS管的直流导通电阻是指漏源电压与漏源电流之比 饱和区 线性区 深线性区 1 3 1MOS管的电特性 跨导 1 饱和区MOS管的跨导工作在饱和区的MOS管可等效为一压控电流源 故可用跨导gm来表示MOS管的电压转变电流的能力跨导越大则表示该MOS管越灵敏 在同样的过驱动电压 VGS Vth 下能引起更大的电流根据定义 跨导为漏源电压一定时 漏极电流随栅源电压的变化率 即 饱和区跨导的倒数形式上与深线性区的导通电阻Ron相同 1 3 1MOS管的电特性 跨导 2 讨论 在KN KP 为常数 W L为常数 时 跨导与VOV成正比 或与漏极电流ID的平方根成正比 若漏极电流ID恒定时 则跨导与过驱动电压成反比 而与KN的平方根成正比 提高跨导方法 增大KN 增大宽长比 增大Cox等 增大ID来实现以增大宽长比为最有效 1 3 1MOS管的电特性 跨导 3 讨论 续 双极型三极管的跨导为 两种跨导相比可得到如下结论 对于双极型 当IC确定后 gm就与几何形状无关 MOS管除了可通过IDS调节跨导外 gm还与几何尺寸有关 双极型三极管的跨导与电流成正比 而MOS管的跨导与成正比 所以在同样工作电流情况下 MOS管的跨导要比双极型三极管的跨导小 1 3 1MOS管的电特性 导纳 饱和区MOS管的导纳对于MOS管的交流小信号工作还引入了导纳的概念 导纳定义为 当栅源电压与衬底电压为一常数时的漏极电流与漏源电压之比 即可表示为 1 3 1MOS管的电特性 最高转换频率 1 MOS管的最高转换频率两种定义共源电流增益 幅度下降到单位1时所对应的频率 角频率 当栅源间输入交流信号时 由源极增加 减小 流入的电子流 一部分通过沟道对电容充 放 电 一部分经过沟道流向漏极 形成漏源电流的增量 当变化的电流全部用于对沟道电容充放电时 MOS管就失去了放大能力 因此MOS管的最高转换频率定义为 对栅输入电容的充放电电流和漏源交流电流值相等时所对应的工作频率 1 3 1MOS管的电特性 最高转换频率 2 忽略寄生电容 C表示栅极输入电容 该电容正比于WLCox MOS管的最高转换频率与沟道长度的平方成反比 因此 减小MOS管的沟道长度就能很显著地提高工作频率 频率 fT T 2 1 3 1MOS管的电特性 最高转换频率 3 转换频率是不能够精确预计器件所能工作的最高频率的 在高频条件下 集总 MOS管模型的许多假设都变得无效了 集总模型对于工作频率不大于 T 10时是有效的 在共源放大器中会介绍一种有效的频率定义 在高频情况下 器件模型变得更有挑战性 需考虑版图中器件及其连接所产生的许多效应 品质因子 FOM 希望MOS管能提供 大的gm同时只消耗较少的电流大的gm同时只有较小的Cgs为了量化MOS管的性能 可以定义以下的 品质因子 gm ID与gm Cgs对于长沟道MOS管 则有 以上两因子反映了相互之间的折中关系 二阶效应 二阶效应在现代模拟集成电路的设计中是不能忽略的 主要的二阶效应有 MOS管的衬底效应沟道调制效应亚阈值导通温度效应 衬底偏置效应 体效应 在前面的分析中 没有考虑衬底电位对MOS管性能的影响假设所有器件的衬底都与源端相连 即VBS 0但在实际的模拟集成电路中 由于MOS器件制作在同一衬底上 就不可能把所有的MOS管的源极与公共衬底相接 即VBS 0例如 在实际电路设计中NMOS管的源极电位有时就会高于衬底电位 仍能保证源极与漏极与衬底间保持为反偏 使器件正常工作 衬底偏置效应 体效应 根据阈值电压的定义及MOS管的工作原理可知 MOS管要形成沟道必须先中和其耗尽层的电荷 假设VS VD VB 当0 VGB Vth时则在栅下面产生了耗尽但没产生反型层 保持MOS管的三端电压不变 而降低衬底电压VB 则VGB增大 更多的空穴被排斥到衬底 而留下了更多的负电荷 从而使其耗尽区变得更宽 即当VB下降 Qb上升时 Vth也会增大 这种由于VBS不为0而引起阈值电压的变化的效应就称为 衬底效应 也称为 背栅效应 衬底偏置效应 体效应 在考虑衬底效应时 其耗尽层的电荷密度变化为 把上式代入阈值电压的表达式 可得其阈值电压为 其中Vth0是在无体效应时的阈值电压 称为体效应因子 的大小由衬底浓度与栅氧厚度决定 其典型值在0 3到0 4V1 2 衬底偏置效应 体效应 对于PMOS管 考虑体效应后的阈值电压为 对于衬底效应表明其衬底势能Vsub不需改变 如果其源电压相对于Vsub发生了改变 会发生同样的现象 衬底偏置效应 体效应 例 衬底偏置效应 体效应 由于衬底电位会影响阈值电压 进而影响MOS管的过驱动电压 所以衬底可以视为MOS管的第二个栅 常称背栅 因此为了衡量体效应对MOS管的I V的影响 定义一衬底跨导衬底跨导 在源漏电压与栅源电压为常量时漏极电流随衬底电压的变化关系 衬底偏置效应 体效应 则衬底电位对漏极电流的影响可用一个电流源gmbVBS表示 在饱和区 gmb能被表示成 衬底偏置效应 体效应 而根据阈值电压与VBS之间的关系可得 因此有 式中 gmb gm gmb正比于 注意gmVGS与gmbVBS具有相同极性 即提高衬底电位与提高栅压具有同等的效果 沟道调制效应 在分析器件的工作原理时已提到 在饱和时沟道会发生夹断 且夹断点的位置随栅漏之间的电压差的增加而往源极移动 即有效沟道长度L 实际上是VDS的函数 这种由于栅源电压变化引起沟道有效长度改变的效应称为 沟道调制效应 记 称为沟道调制系数 当 L远小于L时有 沟道调制效应 在饱和区时 其漏极电流为调制系数为 而 L为 的大小与沟道长度及衬底浓度有关 ND上升则 下降 考虑沟道调制效应的I V曲线如下图所示 沟道调制效应 由上图可以看出 实际的I V曲线在饱和时并非是一平行的直线 而是具有一定斜率的斜线 所有斜线反方向延长与水平轴VDS间有同一交叉点 该点的电压称为厄莱电压VA 因此在源漏之间是一个非理想的电流源 参数 反映了沟道调制的深度 且沟道越短 越大 表明沟道调制越明显 与VA的关系为 1 VA 沟道调制效应 考虑沟道调制效应后MOS管的在饱和区的跨导gm为 所以沟道调制效应改变了MOS管的I V特性 进而改变了跨导 从形式上看 其与VOV的关系还是一致的 沟道调制效应 不考虑沟道调制效应时 MOS管工作于饱和区时的漏源之间的交流电阻为无穷大 是一理想的电流源 考虑沟道调制效应后 由于漏电流随漏源电压变化而变化 其值为一有限值 这个电流源的电流值与其电压成线性关系 可以等效为一个连接在漏源之间的电阻 该电阻其实VDS有关 没有精确解 但可近似表示为 沟道调制效应 一般ro也称为MOS管的输出阻抗 它会限制大部分放大器的最大电压增益 影响模拟电路的性能 对于一个给定的栅源电压 一个较大的沟道长度L可以提供一个更理想的电流源 同时降低了器件的电流能力 因此 为了保证其电流值 应同比例增加W的值 注 以上各式的推导是基于条件 L远小于L 即长沟道 而得到的 此时才有的近似线性关系 而对于短沟道器件则上述条件不成立 它会导致饱和ID VDS特性曲线的斜率可变 亚阈值效应 亚阈值效应又称为弱反型效应前面分析MOS管的工作状态时 采用了强反型近似 即假定当MOS管的VGS大于Vth时 表面产生反型 沟道立即形成 而当MOS管的VGS小于Vth时 器件就会突然截止 亚阈值效应 但MOS管的实际工作状态应用弱反型模型 即当VGS略小于Vth时 MOS管已开始导通 仍会产生一个弱反型层 从而会产生由漏流向源的电流 称为亚阈值导通 而且ID与VGS呈指数关系 其中 1是一非理想的因子 ID0为特征电流 m为工艺因子 因此ID0与工艺有关 而VT称为热电压 亚阈值效应 亚阈值工作特点 在亚阈值区的漏极电流与栅源电压之间呈指数关系 这与双极型晶体管相似 亚阈值区的跨导为 由于 1 所以gm ID VT 即相同电流MOS管最大跨导比双极型晶体管 IC VT 小 亚阈值效应 对于饱和区的MOS管 提高跨导增大W而保持ID不变 但ID保持不变的条件是降低VOV 进而进入亚阈值工作状态时跨导最大 所以为了得到亚阈值区的MOS管的大的跨导 其工作速度受限 大的器件尺寸引入了大的寄生电容 温度效应 温度效应对MOS管的性能的影响主要体现在阈值电压Vth与载流子迁移率随温度的变化 阈值电压Vth随温度的变化 以NMOS管为例 阈值电压表达式两边对温度T求导可以得到 温度效应 上式的值小于零 即阈值电压随温度上升而下降 对于PMOS管则dVth dT总为正值 即阈值电压随温度的上升而增大 温度效应 载流子迁移率随温度的变化实验表明 对于MOS管 如果其表面电场小于105V cm 则沟道中电子与空穴的有效迁移率近似为常数 并约为半导体体内迁移率的一半 实验还发现 在器件工作的正常温度范围内 迁移率与温度近似成反比关系 温度效应 漏源电流IDS随温度的变化根据以上的分析 温度的变化会引起阈值电压与迁移率的变化 进而影响其漏源电流 由萨氏公式两边对T求导得 温度效应 则有 由于温度的变化对阈值电压与迁移率的影响正好是反向的 漏源电流IDS随温度的变化取决于这两项的综合 因此 MOS管的电性能的温度稳定性比双极型的晶体管好 MOS管的小信号模型 MOS管交流小信号模型 低频 小信号是指对偏置的影响非常小的信号 由于在很多模拟电路中 MOS管被偏置在饱和区 所以主要推导出在饱和区的小信号模型 在饱和区时MOS管的漏极电流是栅源电压的函数 即为一个压控电流源 电流值为gmVGS 且由于栅源之间的低频阻抗很高 因此可得到一个理想的MOS管的小信号模型 如图所示 MOS管交流小信号模型 低频 a b MOS管交流小信号模型 低频 其中 a 为理想的小信号模型 实际的模拟集成电路中MOS管存在着二阶效应 而由于沟道调制效应等效于漏源之间的电阻ro 而衬底偏置效应则体现为背栅效应 即可用漏源之间的等效压控电流源gmbVBS表示 因此MOS管在饱和时的小信号等效模型如图 b 所示 上图所示的等效电路是最基本的 根据MOS管在电路中不同的接法可以进一步简化 MOS管交流小信号模型 高频 在高频应用时 MOS管的分布电容就不能忽略 即在考虑高频交流小信号工作时必须考虑MOS管的分布电容对电路性的影响 所以MOS管的高频小信号等效电路可以在其低频小信号等效电路的基础上加入MOS管的级间电容实现 如图所示 MOS管交流小信号模型 高频 MOS管交流小信号模型 高频 不同工作状态 截止 饱和 线性 时MOS管的分布电容值不同 因此若进行详细的计算比较困难 但可以通过软件模拟进行分析 另外 在高频电路中必须注意其工作频率受MOS管的最高工作频率的限制 即电路的工作频率如高于MOS管的最高工作频率时 电路不能正常工作 CMOS中的有源电阻 有源电阻 MOS管的适当连接使其工作在一定状态 饱和区或是线性区 利用其直流电阻与交流电阻可以作为电路中的电阻元件使用 MOS二极管作电阻MOS二极管是指把MOS晶体管的栅极与漏极相互短接构成二端器件 如图所示 有源电阻
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 爆破与安全试题及答案
- 保温工考试试题及答案
- 安全师试题及答案
- 物联网设备安全漏洞检测与防护策略在智能交通信号控制系统中的实战解析报告
- 2025年快时尚零售行业供应链优化与变革分析报告
- 安全教育考试试题及答案
- 安全规程考试试题及答案
- 职业教育未来趋势:2025年职业院校与企业深度合作研究报告
- 2025年医院信息化建设关键环节:电子病历系统医疗信息化战略规划报告
- 大学生膳食营养与健康
- 婴幼儿语言发育筛查量表优质资料
- 《屹立在世界的东方》示范课教学课件【人教部编版小学道德与法治五年级下册】
- 四川省宜宾市翠屏区中学2022-2023学年数学八年级第二学期期末检测试题含解析
- 应急值守专题培训课件
- 2020-2021成都石室联合中学蜀华分校小学数学小升初模拟试卷附答案
- 某冶金机械厂供配电系统设计
- 《在中亚细亚草原上》赏析 课件
- 城市轨道交通供电技术442页完整版教学课件汇总全书电子教案
- Q/GDW248-2008输变电工程建设标准强制性条文实施管理规程第3部分:变电站建筑工程施工教程文件
- 小学生综合素质评价方案与评价表
- 隧道施工安全技术教育培训记录(共19页)
评论
0/150
提交评论