原子力显微镜的原理及应用ppt课件_第1页
原子力显微镜的原理及应用ppt课件_第2页
原子力显微镜的原理及应用ppt课件_第3页
原子力显微镜的原理及应用ppt课件_第4页
原子力显微镜的原理及应用ppt课件_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AtomicForceMicroscopy原子力显微镜 AFM 目录 AFM的发展历史AFM的原理AFM的分类AFM机器的组成影响AFM分辨率的因素AFM技术应用举例照片举例AFM的缺点 高级显微镜 1938年 德国工程师MaxKnoll和ErnstRuska制造出了世界上第一台透射电子显微镜 TEM 1952年 英国工程师CharlesOatley制造出了第一台扫描电子显微镜 SEM 至此 电子显微镜的分辨率达到纳米级 1983年 IBM公司苏黎世实验室的两位科学家GerdBinnig和HeinrichRohrer发明了扫描隧道显微镜 STM 应用电子的 隧道效应 这一原理 对导体或半导体进行观测 隧道效应 经典物理学认为 物体越过势垒 有一阈值能量 粒子能量小于此能量则不能越过 大于此能量则可以越过 例如骑自行车过小坡 先用力骑 如果坡很低 不蹬自行车也能靠惯性过去 如果坡很高 不蹬自行车 车到一半就停住 然后退回去 量子力学则认为 即使粒子能量小于阈值能量 很多粒子冲向势垒 一部分粒子反弹 还会有一些粒子能过去 好像有一个隧道 故名隧道效应 quantumtunneling 可见 宏观上的确定性在微观上往往就具有不确定性 虽然在通常的情况下 隧道效应并不影响经典的宏观效应 因为隧穿几率极小 但在某些特丁的条件下宏观的隧道效应也会出现 AFM出现的意义 STM的原理是电子的 隧道效应 所以只能测导体和部分半导体1985年 IBM公司的Binning和Stanford大学的Quate研发出了原子力显微镜 AFM 弥补了STM的不足返回 成像原理 恒定力量或者恒定高度 探针如何成像 表面形貌和材料如何测量 返回 AFM有多种工作模式 1 接触模式 ContactMode 作用力在斥力范围 力的量级为10 9 10 8N 或1 10eV 可达到原子级分辨率 2 非接触模式 Non ContactMode 作用力在引力范围 包括范德华力 静电力或磁力等 3 轻敲模式 TappingMode 4 Interleave模式 InterleaveNormalMode LiftMode 5 力调制模式 ForceModulationMode 6 力曲线模式 ForceCurveMode 接触式原子力显微镜 接触式AFM是一个排斥性的模式 探针尖端和样品做柔软性的 实际接触 当针尖轻轻扫过样品表面时 接触的力量引起悬臂弯曲 进而得到样品的表面图形 由于是接触式扫描 在接触样品时可能会是样品表面弯曲 经过多次扫描后 针尖或者样品有钝化现象 特点 通常情况下 接触模式都可以产生稳定的 分辨率高的图像 但是这种模式不适用于研究生物大分子 低弹性模量样品以及容易移动和变形的样品 接触式 contactmode 非接触式原子力显微镜 在非接触模式中 针尖在样品表面的上方振动 始终不与样品接触 探测器检测的是范德华作用力和静电力等对成像样品没有破坏的长程作用力 需要使用较坚硬的悬臂 防止与样品接触 所得到的信号更小 需要更灵敏的装置 这种模式虽然增加了显微镜的灵敏度 但当针尖和样品之间的距离较长时 分辨率要比接触模式和轻敲模式都低 特点 由于为非接触状态 对于研究柔软或有弹性的样品较佳 而且针尖或者样品表面不会有钝化效应 不过会有误判现象 这种模式的操作相对较难 通常不适用于在液体中成像 在生物中的应用也很少 非接触式 noncontactmode 间歇接触式原子力显微镜 微悬臂在其共振频率附近做受迫振动 振荡的针尖轻轻的敲击表面 间断地和样品接触 当针尖与样品不接触时 微悬臂以最大振幅自由振荡 当针尖与样品表面接触时 尽管压电陶瓷片以同样的能量激发微悬臂振荡 但是空间阻碍作用使得微悬臂的振幅减小 反馈系统控制微悬臂的振幅恒定 针尖就跟随表面的起伏上下移动获得形貌信息 类似非接触式AFM 比非接触式更靠近样品表面 损害样品的可能性比接触式少 不用侧面力 摩擦或者拖拽 轻敲模式的分辨率和接触模式一样好 而且由于接触时间非常短暂 针尖与样品的相互作用力很小 通常为1皮牛顿 pN 1纳牛顿 nN 剪切力引起的分辨率的降低和对样品的破坏几乎消失 所以适用于对生物大分子 聚合物等软样品进行成像研究 特点 对于一些与基底结合不牢固的样品 轻敲模式与接触模式相比 很大程度地降低了针尖对表面结构的 搬运效应 样品表面起伏较大的大型扫描比非接触式的更有效 间歇接触式 tappingmode 返回 原子力显微镜的构成 在原子力显微镜的系统中 可分成三个部分 力检测部分 位置检测部分 反馈系统 力检测部分 在原子力显微镜 AFM 的系统中 所要检测的力是原子与原子之间的范德华力 所以在本系统中是使用微小悬臂 cantilever 来检测原子之间力的变化量 这微小悬臂有一定的规格 例如 长度 宽度 弹性系数以及针尖的形状 而这些规格的选择是依照样品的特性 以及操作模式的不同 而选择不同类型的探针 位置检测部分 在原子力显微镜 AFM 的系统中 当针尖与样品之间有了交互作用之后 会使得悬臂 cantilever 摆动 所以当激光照射在cantilever的末端时 其反射光的位置也会因为cantilever摆动而有所改变 这就造成偏移量的产生 在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号 以供控制器作信号处理 反馈系统 在原子力显微镜 AFM 的系统中 将信号经由激光检测器取入之后 在反馈系统中会将此信号当作反馈信号 作为内部的调整信号 并驱使通常由压电陶瓷管制作的扫描器做适当的移动 以保持样品与针尖保持合适的作用力 原子力显微镜 AFM 便是结合以上三个部分来将样品的表面特性呈现出来的 在原子力显微镜 AFM 的系统中 使用微小悬臂 cantilever 来感测针尖与样品之间的交互作用 测得作用力 这作用力会使cantilever摆动 再利用激光将光照射在cantilever的末端 当摆动形成时 会使反射光的位置改变而造成偏移量 此时激光检测器会记录此偏移量 也会把此时的信号给反馈系统 以利于系统做适当的调整 最后再将样品的表面特性以影像的方式给呈现出来 返回 提高图像分辨率 1 发展新的技术或模式来提高分辨率 即从硬件设备以及成像机理上提高成像分辨率 如最近Fuchs等发明的Q控制技术 可以提高成像分辨率和信噪比 采用力调制模式或频率调制模式等也可以有效提高成像分辨率 2 选择尖端曲率半径小的针尖 减小针尖与样品之间的接触面积 减小针尖的放大效应 以提高分辨率 3 尽量避免针尖和样品表面的污染 如果针尖上有污染物 就会造成与表面之间的多点接触 出现多针尖现象 造成假像 如果表面受到了污染 在扫描过程中表面污染物也可能粘到针尖上 造成假像的产生 4 控制测试气氛 消除毛细作用力的影响 由于毛细作用力的存在 在空气中进行AFM成像时会造成样品与针尖的接触面积增大 分辨率降低 此时 可考虑在真空环境下测定 在气氛控制箱中冲入干燥的N2 或者在溶液中成像等 溶液的介电性质也可以影响针尖与样品间范德华作用力常数 从而有可能减小它们之间的吸引力以提高成像分辨率 不过液体对针尖的阻尼作用会造成反馈的滞后效应 所以不适用于快速扫描过程 AFM针尖放大效应 AFM是依靠尖端曲率半径很小的微悬臂针尖接触在表面上进行成像 所得到的图像是针尖与样品真实形貌卷积后的结果 如图所示 实线代表样品的真 实形貌 虚线就是针尖扫描所得到的表观图像 二者之间的差别在于针尖与样品真实接触点和表观接触点随针尖移动的函数变化关系 针尖效应不仅会将小的结构放大 而且还会造成成像的不真实 特别是在比较陡峭的突起和沟槽处 一般来说 如果针尖尖端的曲率半径远远小于表面结构的尺寸 则针尖效应可以忽略 针尖走过的轨迹基本上可以反映表面结构的起伏变化 微悬臂检测方法 AFM是通过检测微悬臂形变的大小来获得样品表面形貌信息的 所以微悬臂形变检测技术至关重要 到目前为止 检测微悬臂形变的方式主要有以下几种 1 隧道电流检测法2 电容检测法3 光学检测法4 压敏电阻检测法 5 光束偏转法 此方法由Meyer和Amer于1988年发明 简便实用 广泛应用于目前的商品化仪器 须指出 由于针尖 样品之间的作用力是微悬臂的力常数和形变量之积 所以无论哪种检测方法 都应不影响微悬臂的力常数 而且对形变量的检测须达到一纳米以下 返回 AFM应用技术举例 AFM可以在大气 真空 低温和高温 不同气氛以及溶液等各种环境下工作 且不受样品导电性质的限制 因此已获得比STM更为广泛的应用 主要用途 1 导体 半导体和绝缘体表面的高分辨成像2 生物样品 有机膜的高分辨成像3 表面化学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论