玩转函数第2招--函数的定义域.doc_第1页
玩转函数第2招--函数的定义域.doc_第2页
玩转函数第2招--函数的定义域.doc_第3页
玩转函数第2招--函数的定义域.doc_第4页
玩转函数第2招--函数的定义域.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

玩转函数第2招 第2招:函数的定义域函数y=f(x)中自变量x的取值范围A叫做函数的定义域。求函数的定义域一般有3类问题(在研究函数问题时要树立定义域优先的原则):1、已知解析式求使解析式有意义的x的集合常用依据如下:分式的分母不等于0; 偶次根式被开方式大于等于0; 对数式的真数大于0,底数大于0且不等于1; 指数为0时,底数不等于0三角形中, 最大角,最小角等。2、复合函数的定义域问题主要依据复合函数的定义,其包含两类:已知fg(x)的定义域为x(a,b)求f(x)的定义域,方法是:利用axb求得g(x)的值域,则g(x)的值域即是f(x)的定义域。已知f(x)的定义域为x(a,b)求fg(x)的定义域,方法是:由ag(x)0且a,b1,kR)解析 (1)依题有 函数的定义域为(2)依题意有 函数的定义域为(3)要使函数有意义,则ax-kbx0,即 当k0时,定义域为R当k0时,()若ab0,则 定义域为x|()若0a0,则当0k0)的定义域分析:根据若f(x)的定义域为a,b,则fg(x)的定义域为ag(x)b的解集,来解相应的不等式(或不等式组)解:(1)由0x2+x2得 定义域为-2,-10,1(2)由2x-12,得 -22x-12 所以定义域为(3)由 得 又因a0, 若2-aa,即0a1时,定义域为x|ax2-a 若2-aa,即a1时,x,此时函数不存在变式:1、已知函数f(x+1)的定义域是0,1,求函数f(x)的定义域。 1,2。3、4、函数的定义域是,则函数的定义域是_(答:);5、已知函数f(x)的定义域为0,1,那么函数f(x21)的定义域为( )A.0,1 B.1,2 C.1, D.,11,6若函数的定义域为,则函数的定义域为_(答:1,5)7、定义在区间2,4上的函数的图象过点(2,1),则函数的定义域是_值域是 8若函数的定义域为,则的定义域为_(答:);9若f(x1)的定义域是,求的定义域。 10、已知函数y=f(x)的定义域是0,2,且,那么函数的定义域是_.【精准训练】(1)(湖南理).函数的定义域是( )A.(3,+) B.3, +) C.(4, +) D.4, +)(2)函数的定义域是_(答:);(3)(广东)、函数的定义域是A. B. C. D. (4)(湖北理)设,则的定义域为 ( )A B C D(5)若函数的定义域为R,则_(答:);(6)若函数(a,bR)的定义域为R,则3a+b的取值范围是 。()(7) 若函数f(x) = + 2x + log2x的值域是 3, 1, 5 + , 20,则其定义域是(A) 0,1,2,4(B) ,1,2,4(C) ,2,4(D) ,1,2,4,8(8)函数的定义域为_(9)设,则f(x)的定义域是_(10)函数的定义域是,求a的取值范围。(11)设函数,若的定义域是R,求实数的取值范围;若的值域是R,求实数的取值范围(答:;)(12).某公司有价值a万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值。假设附加值y万元与技术改造投入x万元之间的关系满足:y与a-x和x的乘积成正比;x=时y=a2;其中t为常数,且t0,1(1)设y=f(x),求出f(x)的表达式,并求出y=f(x)的定义域;(2)求出附加值y的最大值,并求出此时的技术改造投入的x的值12、(1)y=4(a-x)x 定义域为 (2)当,x=a/2时,ymax=a2 当,时,函 数 定 义 域 与 思 维 品 质 思维品质是指个体思维活动特殊性的外部表现。它包括思维的严密性、思维的灵活性、思维的深刻性、思维的批判性和思维的敏捷性等品质。函数作为高中数学的主线,贯穿于整个高中数学的始终。函数的定义域是构成函数的两大要素之一,函数的定义域(或变量的允许值范围)似乎是非常简单的,然而在解决问题中不加以注意,常常会使人误入歧途。在解函数题中强调定义域对解题结论的作用与影响,对提高学生的数学思维品质是十分有益的。一、 函数关系式与定义域函数关系式包括定义域和对应法则,所以在求函数的关系式时必须要考虑所求函数关系式的定义域,否则所求函数关系式可能是错误。如:例1:某单位计划建筑一矩形围墙,现有材料可筑墙的总长度为100m,求矩形的面积S与矩形长x的函数关系式? 解:设矩形的长为x米,则宽为(50x)米,由题意得: 故函数关系式为:如果解题到此为止,则本题的函数关系式还欠完整,缺少自变量的范围。也就说学生的解题思路不够严密。因为当自变量取负数或不小于50的数时,S的值是负数,即矩形的面积为负数,这与实际问题相矛盾,所以还应补上自变量的范围: 即:函数关系式为: ()这个例子说明,在用函数方法解决实际问题时,必须要注意到函数定义域的取值范围对实际问题的影响。若考虑不到这一点,就体现出学生思维缺乏严密性。若注意到定义域的变化,就说明学生的解题思维过程体现出较好思维的严密性。二、 函数最值与定义域函数的最值是指函数在给定的定义域区间上能否取到最大(小)值的问题。如果不注意定义域,将会导致最值的错误。如:例2:求函数在2,5上的最值 解: 当时,初看结论,本题似乎没有最大值,只有最小值。产生这种错误的根源在于学生是按照求二次函数最值的思路,而没有注意到已知条件发生变化。这是思维呆板性的一种表现,也说明学生思维缺乏灵活性。其实以上结论只是对二次函数在R上适用,而在指定的定义域区间上,它的最值应分如下情况: 当时,在上单调递增函数; 当时,在上单调递减函数; 当时,在上最值情况是: , 即最大值是中最大的一个值。故本题还要继续做下去: 函数在2,5上的最小值是 4,最大值是12 这个例子说明,在函数定义域受到限制时,若能注意定义域的取值范围对函数最值的影响,并在解题过程中加以注意,便体现出学生思维的灵活性。三、 函数值域与定义域函数的值域是该函数全体函数值的集合,当定义域和对应法则确定,函数值也随之而定。因此在求函数值域时,应注意函数定义域。如:例3:求函数的值域 错解:令 故所求的函数值域是 剖析:经换元后,应有,而函数在0,+)上是增函数, 所以当t=0时,ymin=1 故所求的函数值域是1, +)以上例子说明,变量的允许值范围是何等的重要,若能发现变量隐含的取值范围,精细地检查解题思维的过程,就可以避免以上错误结果的产生。也就是说,学生若能在解好题目后,检验已经得到的结果,善于找出和改正自己的错误,善于精细地检查思维过程,便体现出良好的思维批判性。四、 函数单调性与定义域函数单调性是指函数在给定的定义域区间上函数自变量增加时,函数值随着增减的情况,所以讨论函数单调性必须在给定的定义域区间上进行。如:例4:指出函数的单调区间 解:先求定义域: 函数定义域为 令,知在上时,u为减函数, 在上时, u为增函数。 又 函数在上是减函数,在上是增函数。即函数的单调递增区间,单调递减区间是。如果在做题时,没有在定义域的两个区间上分别考虑函数的单调性,就说明学生对函数单调性的概念一知半解,没有理解,在做练习或作业时,只是对题型,套公式,而不去领会解题方法的实质,也说明学生的思维缺乏深刻性。五、函数奇偶性与定义域判断函数的奇偶性,应先考虑该函数的定义域区间是否关于坐标原点成中心对称,如果定义域区间是关于坐标原点不成中心对称,则函数就无奇偶性可谈。否则要用奇偶性定义加以判断。如:例5:判断函数的奇偶性 解: 定义域区间1,3关于坐标原点不对称 函数是非奇非偶函数 若学生像以上这样的过程解完这道题目,就很好地体现出学生解题思维的敏捷性 如果学生不注意函数定义域,那么判断函数的奇偶性得出如下错误结论: 函数是奇函数错误剖析:因为以上做法是没有判断该函数的定义域区间是否关于原点成中心对称的前提

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论