




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
THREEBASICEQUATIONS 理想媒质中的三个基本方程 1 1 Theequationofmotion 1 theequationofmotion Euler sequation First wewritetherelationbetweensoundpressureandvelocity Considerafluidelement 2 Whenthesoundwavespass thepressureis SotheforceonareaABCDwillbe istheforceofperunitarea TheforceonareaEFGHwillbe ThenetforceexperiencedbythevolumedVinthexdirectionis 3 AccordingtoNewton ssecondlawF ma theaccelerationofsmallvolumeinxdirectionwillbe Forsmallamplitude wecanneglectthesecondordervariableterms 4 When Forsmallamplitude Similarly inthedirectionofyandz wecanobtain 5 Nowletthemotionbethree dimensional sowrite isgradientoperator SinceP0isaconstant andobtain Thisisthelinearinviscidequationofmotion validforacousticprocessesofsmallamplitude 6 2 Theequationofcontinuityrestatementofthelawoftheconservationofmatter Torelatethemotionofthefluidtoitscompressionordilatation weneedafunctionalrelationshipbetweentheparticlevelocityuandtheinstantaneousdensityp 7 Considerasmallrectangular parallelepipedvolumeelementdV dxdydzwhichisfixedinspaceandthroughwhichelementsofthefluidtravel Thenetratewithwhichmassflowsintothevolumethroughitssurfacemustequaltheratewiththemasswithinthevolumeincreases 8 Thatthenetinfluxofmassintothisspatiallyfixedvolume resultingfromflowinthexdirection is Similarexpressionsgivethenetinfluxfortheyandzdirections 9 Sothatthetotalinfluxmustbe Weobtaintheequationofcontinuity 10 Notethattheequationisnonlinear therightterminvolvestheproductofparticlevelocityandinstantaneousdensity bothofwhichareacousticvariables Considerasmallamplitudesoundwave ifwewritep p0 1 s Usethefactthatp0isaconstantinbothspaceandtime andassumethatsisverysmall 11 Weobtain Similarexpressionsgibethenetinfluxfortheyandzdirections 12 Where isthedivergenceoperator 13 3 Theequationofstate WeneedonemorerelationinordertodeterminethethreefunctionsP andu Itisprovidedbytheconditionthatwehaveanadiabatic 绝热的 process thereisinsignificantexchangeofthermalenergyfromoneparticleoffluidtoanother Undertheseconditions itisconvenientlyexpressedbysayingthatthepressurepisuniquelydeterminedasafunctionofthedensity ratherthanadependingseparatelyonboth andT 14 Generallytheadiabaticequationofstateiscomplicated Inthesecasesitispreferabletodetermineexperimentallytheisentropic 等熵 relationshipbetweenpressureanddensityfluctuations WewriteaTaylor sexpansion WhereSisadiabaticprocess thepartialderivativesareconstantsdeterminedforadiabaticcompressionandexpansionofthefluidaboutitsequilibriumdensity 15 Ifthefluctuationsaresmall onlythelowestordertermin Needberetained Thisgivesalinearrelationshipbetweenthepressurefluctuationandthechangeindensity Wesuppose 16 Inthecaseofgasesatsufficientlylowdensity theirbehaviorwillbewellapproximatedbytheidealgaslaw Anadiabaticprocessinanidealgasisgovernedby Hereristheratioofspecificheatatconstantpressuretothatatconstantvolume Air forinstance hasr 1 4atnormalconditions 17 Forideagas Inthesoundfieldofsmallamplitude 18 Speedofsoundinfluids Thisistheequationofstate givestherelationshipbetweenthepressurefluctuationandthechangeindensity Wegetathermodynamicexpressionforthespeedofsound 19 Wherethepartialderivativeisevaluatedatequilibriumconditionsofpressureanddensity Forasoundwavepropagatesthroughaperfectgas thespeedofsoundis Forair at00CandstandardpressureP0 1atm 1 013 105Pa Substitutionoftheappropriatevaluesforairgives 20 Thisisinexcellentagreementwithmeasuredvaluesandtherebysupportsourearlierassumptionthatacousticprocessesinafluidareadiabatic Theoreticalpredictionofthespeedofsoundforliquidsisconsiderablymoredifficultthanforgases Aconvenientexpressionforthespeedofsoundinliquidsis Bsisadiabaticcompressionconstant 21 Thewaveequation Fromtherequirementofconservationofmatterwehaveobtainedtheequationofcontinuity relatingthechangeindensitytothevelocity formthethermodynamiclawswehaveobtainedtheequationofstate relatingthechangeinpressuretothechangeindensity 22 Byusingonemoreequation theequationofmotion thatrelatingthechangeinvelocitytopressure Weshallhaveenoughequationtosolveforallthreequantities 23 Thethreeequationsmustbecombinedtoyieldasingledifferentialequationwithondependentvariable 24 Insmallamplitudesoundfield wecanneglectthesecondordersmallquantity sothat 25 Weobtain Form Equation 3 4 isthelinearized losslesswaveequationforthepropagationofsoundinfluids cisthespeedforacousticwavesinfluids Acousticpressurep x y z t isafunctionofx y z andtimet 26 Where isthethree dimensionalLaplacianoperator Indifferentcoordinatestheoperatortakesondifferentforms Rectangularcoordinates Sphericalcoordinates Cylindricalcoordinates 27 Thevelocitypotentialofsound Fromtheequation 3 1 weget Whererotisrotationoperator 28 Sothevelocitymustbeirrotational 无旋的 Thismeansthatitcanbeexpressedasthegradientofascalar 标量 function 29 where isdefinedasthevelocitypotentialofsound Thephysicalmeaningofthisimportantresultisthattheacousticalexcitationofaninviscidfluidinvolvesnorotationalflow therearenoeffectssuchasboundarylayers shearwaves orturbulence 30 Indifferentcoordinatesittakesondifferentforms Rectangularcoordinates Sphericalcoordinates Cylindricalcoordinates 31 Differentiatingtheequation 3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 6366:2025 EN Non-destructive testing - Leak testing - Radioactive tracer methods for pressured vessels and underground pipelines
- 金属焊接质量控制标准流程考核试卷及答案
- 玻璃仪器模具制造工艺考核试卷及答案
- 数控冲床操作工特殊工艺考核试卷及答案
- 学考信息技术试题及答案
- 英美文学面试题库及答案
- 银行运维实操考试题库及答案
- 银行校招模拟试题及答案
- 数学专业期末试题及答案
- 山东农学专业试题及答案
- 麻精药品管理培训
- 顾客特殊要求培训课件
- 九年级英语宾语从句专项训练题及答案
- 医疗仪器设备效益考核办法
- 生产产能提升激励方案
- 车间5S管理培训
- ICU糖尿病酮症酸中毒护理
- 公司绿色可持续发展规划报告
- 高速铁路桥隧养护维修 课件 2 桥隧养护维修工作的基本方法和基本内容
- 战略规划六步法
- 2024年废旧溴化锂出售合同范本
评论
0/150
提交评论