




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章 第七章统计热力学基础 7 1概论 7 7分子的全配分函数 7 4配分函数 7 5各配分函数的求法及其对热力学函数的贡献 7 2Boltzmann统计 7 8用配分函数计算和反应的平衡常数 第七章 7 1概论 统计热力学的研究方法 统计热力学的基本任务 统计系统的分类 三种统计方法 统计热力学的基本假定 统计热力学的研究方法 物质的宏观性质本质上是微观粒子不停地运动的客观反应 虽然每个粒子都遵守力学定律 但是无法用力学中的微分方程去描述整个体系的运动状态 所以必须用统计学的方法 根据统计单位的力学性质 例如速度 动量 位置 振动 转动等 经过统计平均推求系统的热力学性质 将系统的微观性质与宏观性质联系起来 这就是统计热力学的研究方法 统计热力学的基本任务 根据对物质结构的某些基本假定 以及实验所得的光谱数据 求得物质结构的一些基本常数 如核间距 键角 振动频率等 从而计算分子配分函数 再根据配分函数求出物质的热力学性质 这就是统计热力学的基本任务 统计热力学的优缺点 该方法的局限性 计算时必须假定结构的模型 而人们对物质结构的认识也在不断深化 这势必引入一定的近似性 另外 对大的复杂分子以及凝聚体系 计算尚有困难 统计系统的分类 近独立粒子系统是本章主要的研究对象 三种统计方法 一种是Maxwell Boltzmann统计 通常称为Boltzmann统计 1900年Planck提出了量子论 Maxwell将能量量子化的概念引入统计热力学 发展成为目前的Boltzmann统计 最早是由玻兹曼 Boltzmann 以经典力学为基础建立的统计方法 称为经典统计热力学 三种统计方法 1924年以后有了量子力学 使统计力学中力学的基础发生改变 随之统计的方法也有改进 从而形成了Bose Einstein统计和Fermi Dirac统计 分别适用于不同系统 但这两种统计在一定条件下通过适当的近似 可与Boltzmann统计得到相同结果 统计热力学的基本假定 概率 P 指某一件事或某一种状态出现的机会大小 热力学概率系统在一定的宏观状态下 可能出现的微观状态总数 统计热力学的基本假定 等概率假定 例如 某宏观系统的总微态数为 则每一种微观状态出现的数学概率P都相等 即 对于U V和N确定的某一宏观系统 任何一个可能出现的微观状态 都有相同的数学概率 所以这假定又称为等概率原理 例如 有4个不同小球分装在两个盒子中 共有几种花样 每一种花样就代表一种微观状态 统计热力学的基本假定 分布方式微观状态数数学概率 总微观状态数 每一种微态数出现的概率 7 2Boltzmann统计 定位系统的微态数 定位系统的最概然分布 简并度 有简并度时定位系统的微态数 非定位系统的最概然分布 Boltzmann公式的其它形式 熵和亥氏自由能的表示式 摘取最大项法及其原理 定位系统的微态数 一个由N个可区分的独立粒子组成的宏观系统 在量子化的能级上可以有多种不同的分配方式 设其中的一种分配方式为 无论哪种分配都必须满足 这种分配的微态数为 分配方式有很多 总的微态数为 定位系统的微态数 如何求 问题在于如何在两个限制条件下 找出一种合适的分布 才能使有极大值 在数学上就是求 1 式的条件极值的问题 即 定位系统最概然分布 每种分配的值各不相同 但其中有一项最大值 在粒子数足够多的宏观系统中 可以近似用来代表总的微态数 这就是最概然分布 定位系统最概然分布 首先用Stiring公式将阶乘展开 再用Lagrange乘因子法 求得最概然的分布为 式中和是Lagrange乘因子法中引进的待定因子 用数学方法可求得 所以Boltzmann最概然分布公式为 简并度 degeneration 能量是量子化的 但每一个能级上可能有若干个不同的量子状态存在 反映在光谱上就是代表某一能级的谱线常常是由好几条非常接近的精细谱线所构成 量子力学中把能级可能有的微观状态数 不同量子态的数目 称为该能级的简并度 用符号表示 简并度亦称为退化度或统计权重 简并度 degeneration 例如 气体分子平动能的公式为 当则只有一种可能的状态 则 是非简并的 m 分子质量 V 容器体积 h Planck常数 nx ny nz分别是x y z轴方向的平动量子数 1 2 3 这时 在相同的情况下 有三种不同的微观状态 则 简并度 degeneration 有简并度时定位系统的微态数 设有N个粒子的某定位系统的一种分布为 先从N个分子中选出N1个粒子放在能级上 有种取法 但能极上有个不同状态 每个分子在能极上都有种放法 所以共有种放法 这样将N1个粒子放在能极上 共有种微态数 有简并度时定位系统的微态数 所有分配方式的总微态数为 依次类推 这种分配方式的微态数为 有简并度时定位系统的微态数 限制条件 即定位系统的最概然分布公式 再采用最概然分布概念 用Stiring公式和Lagrange乘因子法求条件极值 得到微态数为极大值时的分布方式 有简并度时定位系统的最概然分布 非定位系统的最概然分布 非定位系统由于粒子不能区分 它在能级上分布的微态数一定少于定位系统 所以对定位系统微态数的计算式进行等同粒子的修正 即将计算公式除以 则非定位系统所有的总微态数为 非定位系统的最概然分布公式 定位与非定位系统 最概然的分布公式是相同的 Boltzmann公式 适用独立粒子系统 Boltzmann公式 最概然分布公式 Boltzmann公式其它形式 1 将i能级和j能级上粒子数进行比较 可得 Boltzmann公式 2 在经典力学中不考虑简并度 则上式成为 设最低能级为 在能级上的粒子数为 略去标号 则上式可写作 讨论压力在重力场中的分布 设各个高度温度相同 最概然分布与平衡分布 摘取最大项法及其原理 例 N个不同的小球 分配在A与B两个盒子中 最概然分布的热力学概率tm 总分布的热力学概率 N U V确定的系统达到平衡时 粒子分布方式几乎将不随时间变化 这种分布就称为平衡分布 在系统处于平衡态的状况下 随着粒子数的增多 最概然分布的数学几率下降 但最概然分布及紧靠最概然分布的一个极小范围内 各种分布的微态数之和已十分接近总微态数 分布 A0BN A1B N 1 AMB N M A N 1 B1 ANB0 摘取最大项法及其原理 式中数值最大的那项就是最概然分布的热力学概率 微态数 已知中M N 2时那一项最大 摘取最大项法及其原理 表1N 10时 总微态数 1024 表2N 20时 总微态数 1048576 摘取最大项法及其原理 例如N 10时 M 4 5 6三种分布数学几率之和为0 656 而N 20时 M 8 9 10 11 12五种分布数学几率之和为0 737 由表可知 1 随N增加 最概然分布的数学概率PB减少 2 偏离最概然分布同样范围内各种分布的几率之和随N的增加而增加 当N由10增加到20时 最概然分布的数学几率由N 10的PB 0 246下降到N 20的PB 0 1762 PD PB曲线随N增大而变狭窄 可以想象 当N变得足够大时 曲线就变为在最概然分布 M N 0 5 处的一条线 结论 当N足够大时 最概然分布可以代替平衡分布 一切分布 摘取最大项法及其原理 结论 平衡分布即为最概然分布所能代表的那些分布 换言之 最概然分布 平衡分布 因此 对宏观体系来讲 粒子分布方式几乎总在最概然分布附近
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚双方共同财产分割及债务清偿协议范本
- 精益假离婚协议书撰写与子女抚养责任履行合同
- 水力发电项目建设方案
- 离婚协议书范本:离婚后共同投资权益分割与清算协议
- 离婚案件子女抚养权变更及生活费用分担合同
- 高风险投资担保协议风险分析与权益保障细则
- 公共交通枢纽物业合同终止及乘客服务协议
- 学生公寓租赁合同范本:精装修学生公寓租赁协议
- 离婚协议中涉及子女医疗费用报销及保障范本
- 给水工程水资源综合利用方案
- 35770-2022合规管理体系-要求及使用指南标准及内审员培训教材
- 流水别墅案例分析
- 录入与排版教学计划
- 呼吸衰竭小讲课课件
- 气瓶检验员考试题库
- AAMA2605-铝窗(板)更高标准有机喷涂的非官方标准、性能要求、测试程序
- 第一章三国演义讲义课件
- 联合国可持续发展目标
- 西语国家概况
- GB/T 5271.29-2006信息技术词汇第29部分:人工智能语音识别与合成
- GB/T 28248-2012印制板用硬质合金钻头
评论
0/150
提交评论