已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ObjectTrackingwithTracking Learning Detection apsvvfb 1 Tracking Learning Detection 2 return location locations Objectlocation 3 Tracking Learning Detection P NLearningObjectModelObjectDetectionTrackerIntegratorLearningComponent 4 PN learning Aclassifiertobelearnedtrainingset acollectionoflabeledtrainingexamplessupervisedtraining amethodthattrainsaclassifierfromtrainingset iv P Nexperts 5 PN learning P expert analyzesexamplesclassifiedasnegative estimatesfalsenegativesandaddsthemtotrainingsetwithpositivelabel N expert analyzesexamplesclassifiedaspositive estimatesfalsepositivesandaddsthemwithnegativelabeltothetrainingset falsepositives falsenegatives 6 PN learning P precisionP recallN precisionN recall 7 PN learning Afterdefiningthestatevectoranda2x2matrixMas Itispossibletorewritetheequationsas 8 PN learning TheP Nexpertsarecharacterizedbyfourqualitymeasures Toreducethis4Dspace theparametersaresettowhererepresentserroroftheexpert Thetransitionmatrixthenbecomes Theeigenvaluesofthismatrixare ThereforetheP Nlearningshouldbeimprovingtheperformanceif Theerrorisvariedintherange 9 PN learning 10 PN learning ThestatevectorconvergestozeroifbotheigenvaluesofthetransitionmatrixMaresmallerthanone 11 PN learning designofrealexperts Ineveryframe theP Nlearningperformsthefollowingsteps evaluationofthedetectoronthecurrentframeestimationofthedetectorerrorsusingtheP Nexpertsupdateofthedetectorbylabeledexamplesoutputbytheexperts 12 PN learning designofrealexperts structureP expert assumesthattheobjectmovesalongatrajectory N expert assumesthattheobjectcanappearatasinglelocationonly 13 PN learning Thecaristrackedfromframetoframebyatracker ThetrackerrepresentstheP expertthatoutputspositivetrainingexamples Noticethatduetoocclusionoftheobject theoutputofP expertintimet 2outputsincorrectpositiveexample N expertidentifiesmaximallyconfidentpatch denotedbyaredstar andlabelsallotherdetectionsasnegative 14 Tracking Learning Detection P NLearningObjectModelObjectDetectionTrackerIntegratorLearningComponent 15 ObjectModel ObjectmodelMisadatastructurethatrepresentstheobjectanditssurroundingobservedsofar Similaritybetweentwopatchesisdefinedas 16 ObjectModel NearestNeighbor NN classifierApatchpisclassifiedaspositiveifotherwisethepatchisclassifiedasnegative Aclassificationmarginisdefinedas 17 ObjectModel Modelupdate i thepatch slabelestimatedbyNNclassifierisdifferentfromthelabelgivenbytheP Nexperts ii patcheswheretheclassificationmarginissmallerthan 18 Tracking Learning Detection P NLearningObjectModelObjectDetectionTrackerIntegratorLearningComponent 19 ObjectDetector Scanning windowgridscalesstep 1 2 horizontalstep 10 ofwidth verticalstep 10 ofheight minimalboundingboxsize 20pixelsCascadedclassifier 20 ObjectDetector Patchvariance Thisstagerejectsallpatches forwhichgray valuevarianceissmallerthan50 ofvarianceofthepatchthatwasselectedfortracking Thestageexploitsthefactthatgray valuevarianceofapatchpcanbeexpressedas andthattheexpectedvalueE p canbemeasuredinconstanttimeusingintegralimages patch 0 y x 21 ObjectDetector Ensembleclassifer Theposteriorsofindividualbaseclassifiersareaveragedandtheensembleclassifiesthepatchastheobjectiftheaverageposteriorislargerthan50 22 ObjectDetector Ensembleclassifer TheensembleconsistsofTbaseclassifiers Eachbaseclassifieriperformsanumberofpixelcomparisonsonthepatchresultinginabinarycodex 23 ObjectDetector Nearestneighborclassifier Afterfilteringthepatchesbythevariancefilterandtheensembleclassifier wearetypicallyleftwithseveralofboundingboxesthatarenotdecidedyet Therefore wecanusetheonlinemodelandclassifythepatchusingaNNclassifier Apatchisclassifiedastheobjectif 24 Tracking Learning Detection P NLearningObjectModelObjectDetectionTrackerIntegratorLearningComponent 25 Tracker Median Flow pyramidalLucas KanadeTracker Thetrackerestimatesdisplacementsofanumberofpointswithintheobject sboundingbox estimatestheirreliability andvoteswith50 ofthemostreliabledisplacementsforthemotionoftheboundingboxusingmedian Failuredetection Aresidualofasingledisplacementisdefinedas Afailureofthetrackerisdeclaredifmedianpixel 26 Tracking Learning Detection P NLearningObjectModelObjectDetectionTrackerIntegratorLearningComponent 27 Integrator IntegratorcombinestheboundingboxofthetrackerandtheboundingboxesofthedetectorintoasingleboundingboxoutputbyTLD Ifneitherthetrackernotthedetectoroutputaboundingbox theobjectisdeclaredasnotvisible Otherwisetheintegratoroutputsthemaximallyconfidentboundingbox using return 28 Tracking Learning Detection P NLearningObjectModelObjectDetectionTrackerIntegratorLearningComponent 29 Learningcomponent InitializationP expertN expert 30 Learningcomponent 31 Learningcomponent Initialization1 theinitalboundingbox10boundingboxes10 x20positivepatches2 Negativepatchesarecollectedfromthesurroundingoftheinitializingboundingbox 32 Learningcomponent IllustrationofP expert a objectmodelandthecoreinfeaturespace grayblob b unreliable dotted andreliable thick trajectory c theobjectmodelandthecoreaftertheupdate Reddotsarepositiveexamples blackdotsarenegative cross x denotesendofatrajectory P expertThegoalofP expertistodiscovernewappearancesoftheobjectandthusincreasegeneralizationoftheobjectdetector 33 Learningcomponent N expertItsgoalistodiscoverclutterinthebackgroundagainstwhichthedetectorshoulddiscriminate Thekey
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地热集中供暖项目建筑工程方案
- 小学语文写作素材积累及训练题库
- 船厂船舶项目建设工程方案
- 工业自动化背景下钢轨生产工艺的革新
- 物业维修工具管理及操作流程标准
- 游戏行业的实时性能监测和大数据分析市场前景分析
- 鼻饲护理护理操作步骤及并发症防控
- 制造业工厂环境安全管理体系
- 物流机器人行业发展现状及未来趋势预测报告
- 城市轨道交通磁浮管道安装与维护手册
- 心理咨询公司投标方案
- 中风的护理要点
- 医院护理质量标准化管理体系
- 粮食仓储设施提升改造项目可行性研究报告
- 公立医院改革政策解读
- 一模初三质量分析
- 工程监理进度控制的实施方案
- 交通事故案件追加被告申请书
- 面包烘焙设备的维护与检修管理
- 2025年无锡市市属国有企业招聘笔试备考题库(带答案详解)
- 蒲公英劳技课课件
评论
0/150
提交评论