2013届高考理科数学总复习(第1轮)全国版课件:2.1映射与函数(第1课时)_第1页
2013届高考理科数学总复习(第1轮)全国版课件:2.1映射与函数(第1课时)_第2页
2013届高考理科数学总复习(第1轮)全国版课件:2.1映射与函数(第1课时)_第3页
2013届高考理科数学总复习(第1轮)全国版课件:2.1映射与函数(第1课时)_第4页
2013届高考理科数学总复习(第1轮)全国版课件:2.1映射与函数(第1课时)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,第讲,1,映射与函数,第二章函数,2,3,4,一、映射的概念与判定方法1.设A、B是两个集合,如果按照某种对应关系f,对于集合A中的每一个元素,这样的对应关系叫做从集合A到集合B的映射,记作.2.给定一个从集合A到集合B的映射,且aA,bB,如果元素a和b对应,那么元素b叫做元素a的,元素a叫做元素b的.,在集合B中都有唯一的元素与它对应,f:AB,原象,象,5,二、函数的三要素及其表示法1.函数的三要素是,,.判断两个函数是否为同一函数只需判定两点:和.2.函数的三种表示方法有、和.三、分段函数与复合函数,定义域,值域,对应法则,定义域是否相同,对应法则是否相同,解析法,列表法,图象法,6,1.如果一个函数在定义域的不同子集中因不同而用几个不同的式子来表示,这样的函数叫做分段函数.分段函数的求法是分别求出再组合在一起,但要注意各区间之间的点不重复、无遗漏.2.如果y=f(u),u=g(x),那么函数y=fg(x)叫做复合函数,其中f(u)叫做函数,g(x)叫做函数.,对应关系,解析式,外层,内层,7,1.在映射f:AB中,下列判断正确的是()A.A中的元素a的象可能不止一个B.A中的元素a1和a2的象不可能相同C.B中的元素b的原象可能不止一个D.B中的元素b1和b2的原象可能相同由映射的定义知,选C.,C,8,2.设集合M=-1,0,1,N=1,2,3,4,5,映射f:MN满足条件“对任意的xM,x+f(x)是奇数”,这样的映射f个数是()A.125B.243C.12D.7分三步:(1)当x=-1时,f(x)=2,4;(2)当x=0时,f(x)=1,3,5;(3)当x=1时,f(x)=2,4,所以映射f共有232=12个.,C,9,3.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“天一函数”,那么解析式为y=2x2+1,值域为9,1,3的“天一函数”共有()A.4个B.8个C.9个D.12个,C,10,分三步:(1)当y=1时,x=0;(2)当y=3时,x=1或x=-1或x=1;(3)当y=9时,x=2或x=-2或x=2,所以“天一函数”共有133=9个.,11,题型一:映射与函数的概念1.判断下列对应是否是从集合A到集合B的映射:(1)A=R,B=x|x0,f:x|x|;(2)A=N,B=N,f:x|x-2|;(3)A=x|x0,B=R,f:xx2.,12,(1)0A,在法则f下,0|0|=0B,故该对应不是从集合A到集合B的映射;(2)2A,在法则f下,2|2-2|=0B,故该对应不是从集合A到集合B的映射;(3)对于任意xA,依法则f:xx2B,故该对应是从集合A到集合B的映射.,13,点评:映射是一种特殊的对应,函数是特殊的映射,即从非空数集到非空数集的映射.对于函数:按某种对应法则f,从非空数集A到非空数集B的函数,要求A中的元素必须有象且唯一,而集合B中的元素也必须有原象,可以有一个或多个.,14,下列从M到N的各对应法则fi(i=1,2,3,4)中,哪些是映射?哪些是函数?哪些不是映射?为什么?,15,(1)M=直线Ax+By+C=0,N=R,f1:求直线Ax+By+C=0的斜率;(2)M=直线Ax+By+C=0,N=|0,f2:求直线Ax+By+C=0的倾斜角;(3)当M=N=R,f3:求M中每个元素的正切;(4)M=N=x|x0,f4:求M中每个元素的算术平方根.,16,(1)当B=0时,直线Ax+C=0的斜率不存在,此时N中不存在与之对应的元素,故f1不是从M到N的映射,也就不是函数了.(2)对于M中任一元素Ax+By+C=0,该直线恒有唯一确定的倾斜角,且0,),故f2是从M到N的映射.但由于M不是数集,从而f2不是从M到N的函数.,17,(3)由于M中元素(kZ)的正切无意义,即它在N中没有象,故f3不是从M到N的映射,自然也不是函数.(4)对于M中任一非负数,其算术平方根唯一且确定,故f4是从M到N的映射,又M、N均为非空数集,所以f4是从M到N的函数.,18,题型二:映射中的象或原象问题2.已知映射f:AB,其中A=B=R,对应法则f:xy=-x2+2x,对于实数kB,在集合A中不存在原象,则k的取值范围是()A.k1B.k1C.k1D.k1,19,已知象k求原象x,即求方程-x2+2x=k的实数解.本题要求k在A中无原象,即方程在R中无实根.由题意,方程-x2+2x=k在R中无实根,即x2-2x+k=0在R中无实根,所以=(-2)2-4k0,解得k1,所以当k1时,集合A中不存在原象,故选A.,20,点评:从集合A到集合B的映射,集合A中的元素一定在集合B中有元素对应,即集合A中的元素有象,而集合B中的元素,可以不与集合A中的元素对应,即B中的元素可以没有原象.,21,在映射f:AB中,已知A中元素(x,y)与B中的元素对应.求:(1)A中的元素(1,3)的象;(2)B中的元素(-5,2)的原象.,22,(1)令x=1,y=3,则所以A中的元素(1,3)的象为(2,-1).(2)令则x=-3,y=-7,所以B中的元素(-5,2)的原象是(-3,-7).,23,题型三:求映射的个数3.已知A=1,2,3,4,5,B=6,7,8.(1)从A到B的映射有多少个?(2)从B到A的映射有多少个?(1)由映射的概念及乘法原理知从A到B的映射共有35=243(个).(2)同理,从B到A的映射共有53=125(个).,点评:设集合A中的元素个数是m,集合B中的元素个数是n,则从集合A到集合B的映射个数是nm.,24,已知A=B=1,2,3,4,5,从A到B的映射f满足:f(1)f(2)f(5);f的象有且只有2个,则适合条件的映射的个数为()A.10B.20C.30D.40,25,分步:在B中选定f下的两个象,有种;确定A中元素在f下的原象,由条件将1,2,3,4,5分前后两组,分别对应较小与较大的两个数,有种分法,故有个映射,选D.,26,题型表格中的对应关系(原创)表中的数据x(x0)与y之间的对应关系是f:xax2+bx+c,根据表中的数据填空.则处的数据可以是,处的数据可以是.,27,由题意,可求得,所以x=4时,可得y=10;由y=5050及x0可得x=100.所以处填10;处填100.,28,1.判断对应

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论