形变热处理.doc_第1页
形变热处理.doc_第2页
形变热处理.doc_第3页
形变热处理.doc_第4页
形变热处理.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘要:形变热处理是形变强化和相变强化相结合的一种综合强化工艺,通过利用金属材料在形变过程中组织结构的改变,影响相变过程和相变产物,以得到所期望的组织与性能。形变热处理通过使钢的母相发生如下变化:在再结晶温度以上形变,道次形变量如超过再结晶临界变形量,则母相发生动态或静态的再结晶,使晶粒得到细化;如进行多道次形变,则发生多次再结晶,母相的晶粒显著细化;在材料的再结晶温度以下形变,母相不发生再结晶,而产生大量晶体缺陷,或仅发生回复过程,形成多边化亚结构;形变诱发第二相由母相中析出,析出的第二相又与位错交互作用,使母相的成分与结构皆发生变化,达到形变强化和相变强化的目的。关键字: 回复 再结晶 晶体缺陷 位错 第二相正文形变热处理由于将金属材料的成形与获得材料的最终性能结合在一起,简化了生产过程,节约能源消耗及设备投资,同时与普通热处理比较,形变热处理后金属材料能达到更好的强度与韧性相配合的机械性能。有些钢特别是微合金化钢,唯有采用形变热处理才能充分发挥钢中合金元素的作用,得到强度高、塑性好的性能。例如09MnNb钢正常轧制后屈服强度(s)为39kgf/mm2,-40梅氏(Mesnager)冲击值(K)为0.63kgfm/cm2;经正火后,-40的K可提高到68kgfm/cm2,而s下降5kgf/mm2;如采用控制轧制(形变热处理工艺之一),强度与韧性都可进一步提高:s约45kgf/mm2,-40的K可达612kgfm/cm2。 正是由于这样的原因,形变热处理已广泛应用于生产金属与合金的板材、带材、管材、丝材,和各种零件如板簧、连杆、叶片、工具、模具等。 1.形变热处理工艺中的塑性变形形变热处理工艺中的塑性变形(范性形变),可以用轧、锻、挤压、拉拔等各种形式;与其相配合的相变有共析分解、马氏体相变、脱溶等。形变与相变的顺序也多种多样:有先形变后相变;在相变过程中进行形变;也可在某两种相变之间进行形变。 较普遍采用形变热处理工艺如附表中所示。2.形变对母相的作用2.1对铁素体珠光体型相变的作用 形变后产生了再结晶的细奥氏体晶粒,使冷却转变后的铁素体也相应得到细化。形变后未发生再结晶的奥氏体中的大量晶体缺陷,为此后铁素体的转变提供了大量形核位置,并使铁素体形核的热激活过程更容易进行,这两者使转变后的铁素体晶粒细化;此外形变的奥氏体有加速扩散过程,加速铁素体转变速度,提高铁素体形成的温度等作用(见表中类型2)。 如果在奥氏体中存在有形变诱发析出的第二相,则对细化铁素体晶粒更为有效。低碳,含有微量(0.01)的Nb、V、 Ti合金元素的微合金化钢,就属于这类情况。形变使奥氏体产生多边化亚晶,在奥氏体晶界堆积较多的位错,形变又诱发析出Nb(CN)或其他合金元素的碳、氮化物。细小的第二相首先在奥氏体晶界处及亚晶界上析出,并钉扎亚晶界及晶界,使亚晶的长大和晶界的迁移都受到阻碍,造成奥氏体再结晶核心难以在该处产生,即使产生了也不易长大,从而抑制了奥氏体再结晶的发生。只有给予更大变形量,进一步提高再结晶的驱动力时,才会发生再结晶,结果,使再结晶后的奥氏体晶粒比普通低碳钢细小。大约在950以下,形变诱发析出的第二相,能完全阻止奥氏体发生再结晶,这样就相对地扩大了奥氏体未再结晶的温度范围,有利于增大未再结晶区的形变量,使奥氏体产生更大量的晶体缺陷。在奥氏体再结晶区及未再结晶区连续变形,得到的是细小的奥氏体晶粒及高密度的晶体缺陷。这样的奥氏体转变后形成的铁素体晶粒细小而均匀,生产上可得到 5直径的铁素体。 仅就晶粒细化这一项,就使钢的屈服强度提高1015kgf/mm2,同时提高钢的低温韧性,使韧性脆性转变温度下降到70。铁素体晶粒的细化还可以抵销由于相间沉淀及铁素体中析出的第二相所造成的脆性,保留其沉淀强化作用,在具有良好低温韧性的基础上,进一步提高钢的屈服强度。 2.2对淬火时马氏体、贝氏体相变的作用再结晶的奥氏体仅能细化所转变的马氏体或贝氏体组织。形变而未再结晶的奥氏体,对淬火时的马氏体和贝氏体转变的作用却是多方面的(见附表中类型1、3、5 )。奥氏体中的大量晶体缺陷使以共格方式长大的马氏体、贝氏体晶体长大受阻,使转变后的组织得到细化。奥氏体中的晶体缺陷可被其转变的马氏体、贝氏体所继承,使转变后的马氏体或贝氏体组织的位错密度高于一般热处理形成的马氏体和贝氏体的位错密度。当奥氏体在形变过程产生形变诱发第二相析出时,这种现象尤为突出。形变诱发析出的第二相质点,钉扎了奥氏体已有的可动位错;在进一步形变时,促进奥氏体增殖大量新的位错,大大增加奥氏体中的位错密度,相应地增加转变后的马氏体的位错密度。马氏体、贝氏体中位错密度提高,是形变淬火得以提高钢的强度的主要原因。这样的马氏体组织在回火时,由于位错密度高,为碳化物提供了大量形核位置,结果使回火马氏体中的碳化物质点更细小,分布更均匀。形变诱发由奥氏体中析出第二相,降低奥氏体中碳和合金的含量,有利于减少孪晶马氏体,增多板条状马氏体的数量。马氏体组织的细化、孪晶马氏体的减少,以及回火时均匀的碳化物分布,是形变淬火钢韧性好的原因。奥氏体形变中形成的亚晶粒,比较稳定,不仅可为直接形成的马氏体所继承,还能遗传给重新加热淬火,再次形成的马氏体组织,使形变淬火后再加热淬火的钢的强度仍高于一般淬火钢。形变奥氏体除可以细化所转变的贝氏体外,还能改变转变的贝氏体组织类型。低碳贝氏体钢未形变的奥氏体转变为上贝氏体组织,形变的奥氏体则转变为颗粒状贝氏体组织,这种组织的塑性、韧性比上贝氏体要好。 2.3形变诱发马氏体相变 在MsMd温度范围内形变能诱发奥氏体转变为马氏体,而在Ms温度以上就发生马氏体转变。Md称为形变诱发马氏体开始转变点。形变诱发马氏体可提高钢的强度,更重要的是,在奥氏体基体中的应力集中,由于形变诱发马氏体的产生而得以弛豫,避免微裂纹的产生与扩展,提高钢的塑性(见表中类型5)。 上述奥氏体的形变对相变的作用的规律对于其他合金也基本适用。 3.工艺参数的确定 实际应用形变热处理工艺时,不仅要结合材料的成分与性能要求,确定形变后的热处理工艺参数,更重要的是要根据母相形变后的组织结构及其对相变和相变产物的作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论