云南省昭通市实验中学高一数学《简单的线性规划问题(2)》课件_第1页
云南省昭通市实验中学高一数学《简单的线性规划问题(2)》课件_第2页
云南省昭通市实验中学高一数学《简单的线性规划问题(2)》课件_第3页
云南省昭通市实验中学高一数学《简单的线性规划问题(2)》课件_第4页
云南省昭通市实验中学高一数学《简单的线性规划问题(2)》课件_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,简单的线性规划问题(二),2,如果不等式组都是关于x、y的一次不等式.,欲求最大值或最小值的函数叫做目标函数.如果目标函数又是x、y的一次解析式,所以又叫线性目标函数.,1.线性约束条件:,2.线性目标函数:,复习引入,3,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.,4.满足线性约束条件的解(x,y)叫做可行解.,5.由所有可行解组成的集合叫做可行域.,6.使目标函数取得最大值或最小值的可行解,它们都叫做这个问题的最优解.,3.线性规划问题:,复习引入,4,y,x,O,3,5,Q(2,3),如图是一所学校规划的一块绿地(局部),其中x轴、y轴分别表示两条马路。(1)请写出该区域所对应的不等式组。,A,B,引例,5,若该校打算购进不同品种的草皮对该区域进行绿化(品种、价格均不同)。假设在该区域内点P(x、y)处种植的草皮造价为z=2x+y,(2)同一种草皮种植的区域是怎样的?(3)何处种植的草皮价格最高,其最高值是多少?,引例,y,x,O,3,5,Q(2,3),A,B,(x,y),6,(1)不同品种的草皮分别种植在不同的线段上,且彼此平行.,(2)同一种草皮种在直线y-2x+z被区域截得的线段上.,(3)价格即是直线y-2x+z在y轴上的截距.,结论,7,y,x,O,3,5,Q(2,3),(3)何处种植的草皮价格最高,其最高值是多少?,(x,y),A,B,结论:直线y-2x+z经过点Q(2,3)时在y轴上的截距最大,所以在此处种植的草皮价格最高,其最高值是z=22+3=7,引例,8,y,x,O,3,5,Q(2,3),除去实际背景,抽象为简单线性规划问题:,在约束条件:,x+y503x+y90 x0y0,下,求目标函数z=2x+y的最大值.,有无最小值?,B,A,引例,9,利用作图方法解简单线性规划问题的步骤:,第一步:根据约束条件画出可行域;第二步:将z看成“截距”,令z0,画直线l0;第三步:观察,分析,平移直线l0,从而找到最优解;第四步:求出目标函数的最大值或最小值.,画,移,求,答,方法小结,10,y,x,O,3,5,Q(2,3),在约束条件:,x+y503x+y90 x0y0,下,B,A,求目标函数z=-2x+y的最大值和最小值.,在点A(0,5)处取得最大值:z=5在点B(3,0)处取得最小值:z=-23+0=-6,变式练习,11,y,x,O,3,5,Q(2,3),(x,y),草皮造价为z=2x+y,()同一种草皮种植的区域是怎样的?()何处种植的草皮价格最高,其最高值是多少?,引例,12,y,x,O,3,5,Q(2,3),(x,y),草皮造价为z=2x+y,由此告诉我们:(1)z是一个与“截距”有关的量,不一定是截距;,(2)最优解不一定只有一个,可能有多个或无数个.,(1)同一种草皮种在直线y-x+z/2被区域截得的线段上.,(2)价格z/2表示直线y-x+z/2在y轴上的截距.,A,B,(3)直线过A,Q时z/2最大,即线段AQ上每一点都是最优解,此时最高价格z=10,引例,13,课本例3(例6).要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:,规格类型,钢板类型,今需要A,B,C三种规格的成品分别15,18,27块,(1)试用数学关系和图形表示上述要求。,(2)各截这两种钢板多少张可得所需A、B、C三种规格成品,且使所用钢板张数最少?,例题讲解,14,解:设需截第一种钢板x张,第二种钢板y张,则,作出可行域:,目标函数为zxy,例题讲解,15,y,x,O,2,2,4,8,8,18,28,16,例题讲解,16,y,x,O,2,2,4,8,8,18,28,16,例题讲解,17,y,x,O,2,2,4,8,8,18,28,16,例题讲解,18,y,x,O,2,2,4,8,8,18,28,16,例题讲解,如何找整数时的最优解?,19,y,x,O,2,2,4,8,8,18,28,16,例题讲解,如何找整数时的最优解?,20,解线性规划应用题的一般步骤:,方法小结,21,解线性规划应用题的一般步骤:,1.设立所求的未知数;,方法小结,22,1.设立所求的未知数;2.列出约束条件;,解线性规划应用题的一般步骤:,方法小结,23,1.设立所求的未知数;2.列出约束条件;3.建立目标函数;,解线性规划应用题的一般步骤:,方法小结,24,1.设立所求的未知数;2.列出约束条件;3.建立目标函数;4.作出可行域;,解线性规划应用题的一般步骤:,方法小结,25,1.设立所求的未知数;2.列出约束条件;3.建立目标函数;4.作出可行域;5.运用图解法,求出最优解;,解线性规划应用题的一般步骤:,方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论