




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,动态几何问题分类解析,.,图形中的点、线的运动,构成了数学中的一个新问题动态几何。它通常分为三种类型:动点问题、动线问题、动形问题。这类试题以运动的点、线段、变化的角、图形的面积为基本的条件,给出一个或多个变量,要求确定变量与其它量之间的关系,或变量在一定条件下为定量时,进行相关的几何计算、证明或判断。,.,,,在解这类题时,要充分发挥空间想象的能力,往往不要被“动”所迷惑,在运动中寻求一般与特殊位置关系;在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,通过探索、归纳、猜想,正确分析变量与其它量之间的内在联系,建立变量与其它量之间的数量关系。再充分利用直观图形,并建立方程、函数模型或不等式模型,结合分类讨论等数学思想进行解答。,.,,,1、动点与最值问题相结合,2、动点与列函数关系式相结合,3、动点与坐标几何题相结合,4、动点与分类讨论相结合,一、动点型,.,一、动点与最值问题相结合,A,D,C,B,E,A,D,B,C,E,F,.,类似的试题有:,A,M,N,D,P,B,C,N,.,A.2C.4,B.,D.,A,N,M,B,P,C,.,A.6B.8,C.4D.10,B,M,N,A,D,C,E,.,(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A求使点P运动的总路径最短的点E,点F的坐标,并求出这个最短总路径的长,(4)已知抛物线与y轴交于点,与轴分别交于,两点,(1)求此抛物线的解析式;,(2)若点D为线段OA的一个三等分点,求直线DC的解析式;,已知:如图:ABC中,C=90,AC=3cm,CB=4cm,两个动点P、Q分别从A、C两点同时按顺时针方向沿ABC的边运动,当点Q运动到点A时,P、Q两点运动即停止,点P、Q的运动速度分别为1cm/s、2cm/s。设点P运动时间为t(s),二、动点与列函数关系式相结合,(2).当点P、Q运动时,阴影部分的形状随之变化,设PQ与ABC围成阴影部分面积为S(cm),求出S与时间t的函数关系式,并指出自变量t的取值范围;,(3)点P、Q在运动的过程中,阴影部分面积S有最大值吗?若有,请求出最大值;若没有,请说明理由。,(1).当时间t为何值时,以P、C、Q三点为顶点的三角形的面积(图中的阴影部分)等于2cm;,.,解:(1),解得,(1)当时间t为何值时,以P、C、Q三点为顶点的三角形的面积(图中的阴影部分)等于2cm;,.,解:(2),(2).当点P、Q运动时,阴影部分的形状随之变化,设PQ与ABC围成阴影部分面积为S(cm),求出S与时间t的函数关系式,并指出自变量t的取值范围;,当2t3时,当0t2时,当3t4.5时,.,解:(3)有,在2t3时,在0t2时,在3t4.5时,(3)点P、Q在运动的过程中,阴影部分面积S有最大值吗?若有,请求出最大值;若没有,请说明理由。,所以S有最大值是,技巧点拨:由几何条件确定函数关系式,关键在于寻找两个变量的等量关系,同时,确定自变量取值范围也是完整解这类题不可忽视的步骤,求自变量的取值范围一般采用结合图形。直接确定其思维过程为:,x最大能“逼近”哪个点(数)?最小能“逼近”哪个点(数)?能否等于这个数?在变化过程中有无特殊点(数)综合以上两点下结论,另外,此题还结合了动态问题和分类问题,这是代数几何综合题,也是今后发展的命题趋势。,.,(1)用含t的代数式分别表示CE和QE的长;(2)求APQ的面积S与t的函数关系式;(3)当QE恰好平分APQ的面积时,QE的长是多少厘米?,类似的试题有:,A、B是直线l上的两点,AB=4厘米。过l外一点C作CDl,射线BC与l所成的锐角1=60,线段BC=2厘米。动点P、Q分别从B、C同时出发,P以每秒1厘米的速度沿由B向C的方向运动。设P、Q运动的时间为t(秒),当t2时,PA交CD于E。,.,如图,在平面直角坐标系中,四边形,为矩形,点,的坐标分别为,,动点,分别从点,同时出发,以每秒1个单位的速度运动,其中点,沿,向终点,运动,点,沿,向终点,运动,,作,,交,于点,,连结,,当两动点,秒时,过点,运动了,(1),点的坐标为(,)(用含,的代数式表示),(2)记,的面积为,,求,与,的函数关系式,(3)当,秒时,,有最大值,最大值是,(4)若点,在,轴上,当,有最大值且,为等腰三角形时,求直线,的解析式,三、动点与坐标几何题相结合,A,B,E,F,.,解:(1),(2)在,中,,,,边上的高为,即,(3),E,F,.,解:由(3)知,当,有最大值时,,,此时,(4)若点Q在y轴上,当s有最大值且QAN为等腰三角形时,求直线AQ的解析式,的中点处,如下图,设,则,,,.,为等腰三角形,,若,,则,,此时方程无解,若,,即,,解得,若,,即,,解得,,,在,.,当,为,时,设直线,的解析式为,,将,代入得,直线,的解析式为,当,为,时,,,,均在,轴上,,直线,的解析式为,(或直线为,轴),在同一直线上,,不存在,舍去故直线,的解析式为,,或,当,为,时,,.,1.如图3,,A是硬币圆周上一点,硬币与数轴相切于原点O,A与O点重合,假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点重合,则点对应的实数是,类似的试题有:,已知,如图,在直角坐标系中,矩形的对角线所在直线解析式为:,(1)在x轴上存在这样的点M,使MAB为等腰三角形,求出所有符合要求的点M的坐标;,(2)动点P从点C开始在线段CO上以每秒个单位长度的速度向点O移动,同时,动点Q从点O开始在线段上OA以每秒1个单位长度的速度向点A移动设P,Q移动的时间为t秒,是否存在这样的时刻t,使OPQ与BCP相似,并说明理由;,设BPQ的面积为s,求s与t间的函数关系式,并求出t为何值时,s有最小值,四、动点与分类讨论相结合,M1,M2,M3,M5,M4,(1)易知,为底边,则,为腰且,时,由题意可知,为腰且,时,由题意可知,,由对称性知,(2)假设存在这样的时刻,,使,与,相似,由,或,得,或,即,或,解得,或,又,,,当,或,时,,与,相似,(2)、是否存在这样的时刻t,使OPQ与BCP相似,并说明理由;,.,当,时,面积,有最小值,,最小值是,(2)、设BPQ的面积为s,求s与t间的函数关系式,并求出t为何值时,s有最小值,.,1、如图,已知正三角形ABC的高为9厘米,O的半径为r厘米,当圆心O从点A出发,沿线路ABBCCA运动,回到点A时,O随着点O的运动而停止.(1)当r=9厘米时,O在移动过程中与ABC三边有几个切点?,当r=9厘米时,O在移动过程中与ABC三边有三个切点.,A,B,C,类似的题有:,.,(2)当r=2厘米时,O在移动过程中与ABC三边有几个切点?,当r=2厘米时,O在移动过程中与ABC三边有六个切点.,A,B,C,当r9厘米时,没有切点;当r=9厘米时,有3个切点;当0r9厘米时,有6个切点.,(3)猜想不同情况下,r的取值范围及相应的切点个数;,2.如图,A是半径为12cm的O上的定点,动点P从A出发,以的速度沿圆周逆时针运动,当点P回到A地立即停止运动(1)如果,求点P运动的时间;(2)如果点B是OA延长线上的一点,AB=OA,那么当P点运动的时间为2s时,判断直线BP与O的位置关系,并说明理由,.,解(1)当时,点P运动的路程为O周长的或设点运动的时间为当点P运动的路程为周长的时,,O,O,解得,当点,运动的路程为,周长的,时,,解得,当,时,点,运动的时间为,或,.,O,连接OP、PA,当点P运动的时间为2s时,点P运动的路程为,(2)如图,当点,运动的时间为,时,直线,与,相切,理由如下:,,,.,,,这类试题的分类讨论有固定的模式,它要求学生通过观察、比较、分析图形的变化,揭示图形之间的内在联系,要能够根据条件作出或画出图形,从而进行分类。,.,,,1、线平移型,2、线旋转型,二、动线型,.,,,1.线平移型,N,M,O,C,A,y,x,B,(1)求A、B两点的坐标。(2)设OMN的面积为S,直线l运动的时间为t秒(0t4),试求S与t的函数表达式。,F,L,.,,,O,B,M,y,x,A,N,C,.,,,类似的试题有:,如图,平面上一点从点出发,沿射线方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以为对角线的矩形的边长;过点且垂直于射线的直线与点同时出发,且与点沿相同的方向、以相同的速度运动,(1)在点运动过程中,试判断与轴的位置关系,并说明理由,(2)设点与直线都运动了秒,求此时的矩形与直线在运动过程中所扫过的区域的重叠部分的面积(用含的代数式表示),.,,,2.线旋转型,已知四边形ABCD中,绕点B旋转,它的两边分别交AD,DC(或它们的延长线)于E,F,(1)当绕点B旋转到时(如图1),求证:,(2)当绕点B旋转到时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF,又有怎样的数量关系?请写出你的猜想,不需证明,C,C,D,D,E,E,F,F,M,M,图2,图3,N,E,D,E,N,.,,,三、动图型,1、图形平移型2、图形旋转型3、图形翻折型,.,,,1.图形平移型,在ABC中,AB=AC,CGBA交BA的延长线于点G一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;,.,,,(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DEBA于点E此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DEDF与CG之间满足的数量关系,然后证明你的猜想;,(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由),图2,.,,,类似的试题有:如图,直线的解析式为与x轴,y轴分别交于点A,B(1)求原点O到直线的距离;(2)有一个半径为1的C从坐标原点出发,以每秒1个单位长的速度沿y轴正方向运动,设运动时间为t(秒)当C与直线相切时,求t的值,.,,,2.已知抛物线经过点A(0,5)和点B(3,2)(1)求抛物线的解析式;(2)现有一半径为1,圆心P在抛物线上运动的圆,问当P在运动过程中,是否存在P与坐标轴相切的情况?若存在,请求出圆心P的坐标;若不存在,请说明理由;(3)若Q的半径为r,点Q在抛物线上,当Q与两坐标轴都相切时,求半径r的值,.,,,2.图形旋转型,填空或解答:点B,C,E在同一直线上,点A,D在直线CE的同侧,AB=AC,EC=ED,直线AE,BD交于点F(1)如图1,若,则_;如图2,若,则_;,A,A,E,.,,,(2)如图3,若,则_(用含的式子表示);(3)将图3中的绕点C旋转(点F不与点A,B重合),得图4或图5在图4中,与的数量关系是_;在图5中,与的数量关系是_请你任选其中一个结论证明,E,F,.,,,评析:本题利用图形不变性,探索了等腰三角形在旋转过程中的相关角度的关系。问题源于课本,高于课本,条件由等边三角形弱化为等腰三角形,灵活考查了同学们相似三角形的判定与性质的灵活应用,而且问题设置成从简单到复杂渐次展开的形式,使同学们在解决问题的过程中,逐渐认识了问题的本质。,解:(1),(2),(3)图4中:,图5中:,.,,,如图(1),在平面直角坐标系中,ABCO的顶点O在原点,点A的坐标为(-2,0),点B的坐标为(0,2),点C在第一象限(1)直接写出点C的坐标;(2)将ABCO绕点O逆时针旋转,使OC落在Y轴的正半轴上,如图(2),得DEFG(点D与点O重合)FG与边AB,x轴分别交于点Q,点P设此时旋转前后两个平行四边形重叠部分的面积为,求的值;(3)若将(2)中得到的DEFG沿x轴正方向平移,在移动的过程中,设动点D的坐标为(t,0),DEFG与ABCO重叠部分的面积为s,写出s与t(0t2)的函数关系式(直接写出结果),.,,,三图形翻折型,生活中,有人喜欢把传送的便条折成如下图的形状,折叠过程是这样的(阴影部分表示纸条的反面):,B,M,A,A,A,A,M,M,M,B,B,B,P,如果由信纸折成的长方形纸条(图)长为26cm,宽为xcm,分别回答下列问题:(1)为了保证能折成图的形状(即纸条两端均超出点p),试求x的取值范围(2)如果不但要折成图的形状,而且为了美观,希望纸条两端超出点p的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示),.,,,解:(1)由折纸过程知,,(2)图为对称图形,,即点M与点A的距离是cm,评析:本题以同学们信手拈来的纸片为用具,通过折叠、旋转来考查对称变化的思想,真正体现了重视实践的理念。折叠这类问题实际上是对称问题,解此类题目应抓住翻折前后的轴对称的有关性质及一些隐含的位置关系和数量关系分类讨论来解决。这类问题主要注重培养同学们用动态的观点去看待问题,有利于同学们空间想象能力和动手操作能力的锻炼。,.,,,基于上述分析,可以发现动态几何问题知识覆盖面广、形式多样,其中蕴含数学思想丰富,同学们在考试中较好解决此类问题是有一定难度的。要想有效地提高数学总复习的质量和效益,使同学们能较好的应对动态几何型问题,必须做到:,1.重视双基和数学思想方法中考数学试题很多都来源于课本或同学们的生活实践,从基本要求出发适当加以拓展,因此,在具体学习中要探索和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 谁动了我的时间课件
- 2025年度企业人力资源管理与优化服务合同
- 2025二手集装箱国际运输与销售合同
- 2025年度农业现代化人才招聘与乡村振兴战略合同
- 2025版通信工程施工现场安全管理及应急预案合同示范
- 2025版文化创意产品原创设计授权协议书
- 诺如病毒知识培训小结课件
- 纪念白求恩精美课件
- 红酒基础知识培训课件
- 2025电子产品买卖合同样本版
- GB/T 12755-1991建筑用压型钢板
- GA 447-2003警服材料精梳涤棉混纺格子布
- FZ/T 14038-2017涤纶转移印花布
- 《传播学概论》第一章课件
- 精神障碍的检查与诊断-课件
- 对青少年校园足球工作提出的意见
- 聚酯合成反应原理相关知识
- 中国音乐史讲稿
- 工程技术研究中心(重点实验室)可行性研究报告
- 部编版五年级上册第一单元集体备课
- 某煤电一体化电厂工程间接空冷系统投标文件
评论
0/150
提交评论