




已阅读5页,还剩104页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,第二章无机材料的制备化学,.,对材料来说,尤其是本讲义中一直侧重的无机材料,原则上讲全部固体物质的制备和合成方法均可以应用于其制备中。但是,我们应当清醒地意识到,材料不等于固体化学物质,材料的物理形态往往对材料的性质起着相当大的,有时甚至是决定性的作用。因此,化学合成方法并不是材料合成与制备的全部,材料还有其本身特殊的合成和制备手段。正因为如此,我们在这里不再一一列举经典的固体合成方法,而是局限介绍材料合成领域的一些基本的和特殊的方法。,.,固体原料混合物的固态形式直接反应是制备多晶固体最为广泛的方法,一般须在较高温度下进行。特点是操作简单、成本低、无机固体的制备及粉体材料和陶瓷材料。固体反应与溶液反应的区别溶液离子、分子水平混合(活化能)固体颗粒粒晶微米量级,扩散克服晶格阻力反应温度范围:10001500C,一批具有特殊性能的无机功能材料和化合物如各类复合氧化物、含氧酸盐、二元或多元金属等,1.高温固体扩散法,.,绝大多数材料以固体形态使用,固体可以划分为如下种类:,无定形体和玻璃体(AmorphousandGlassy)固体中原子排列近程有序、远程无序,晶体(Crystals),完美晶体(Perfectcrystals)原子在三维空间排列无限延伸有序,并有严格周期性,缺陷晶体(Defectcrystals)固体中原子排列有易位、错位以及本体组成以外的杂质,固体(Solidstates),.,固体原料混合物以固体形式直接反应过程是制备多晶固体(即粉末)最为广泛应用的方法。固体混合物在室温下经历一段时间,并没有可觉察的反应发生。为使反应以显著速度发生,通常必须将它们加热至甚高温度,一般在10001500。热力学和动力学两种因素在固体反应中都极为重要:热力学通过考察一个特定反应的自由能来判断该反应能否发生,动力学因素则决定反应进行的速率。,.,热力学和结构因素评价从热力学上看,MgO和Al2O3的混合物反应生成尖晶石的反应:MgO(s)+Al2O3(s)MgAl2O4(s)的自由能允许反应正向自发进行。但固相反应实际上是反应物晶体结构发生变化的过程。尖晶石MgAl2O4和反应物MgO、Al2O3的晶体结构有其相似性和差异性。尖晶石MgAl2O4和反应物MgO结构中,氧负离子均作面心立方密堆排列,而在Al2O3的晶体结构中,氧负离子呈畸变的六方密堆排列;另一方面,阳离子Al3+在Al2O3和尖晶石MgAl2O4中占据氧负离子的八面体空隙,而阳离子Mg2+在MgAl2O4结构中占据氧负离子四面体配位,而在MgO结构中却占据氧负离子八面体配位孔隙。,.,反应起始界面,Mg2+,Al3+,MgO,MgO,Al2O3,Al2O3,3x/4,x/4,反应界面,固体反应的过程(MgO+Al2O3MgAl2O4),MgAl2O4产物层,MgO/MgAl2O4界面:4MgO+2Al3+-3Mg2+MgAl2O4,MgAl2O4/Al2O3界面:4Al2O3+3Mg2+-2Al3+3MgAl2O4,成核困难,扩散困难,反应物和产物结构不同,加之产物生成时的结构重排,化学键的断裂和重组,原子的迁移距离长,.,.,实验过程,试剂:MgOMgCO3(碱式)Al2O3Al(OH)3颗粒粒径微米量级研磨1mm,影响固相反应速率的主要因素反应物固体的表面积和反应物间的接触面积生成物相的成孩速度相界面间特别是通过生成物相层的离子扩散速度,.,动力学评价从动力学上看,MgO和Al2O3的混合物反应生成尖晶石的反应在室温时反应速率极慢,仅当温度超过1200时,才开始有明显的反应,必须将粉末在1500下加热数天,反应才能完全。过程分析MgO和Al2O3两种晶体反应是相互紧密接触,共享一个公用面,即产物先在界面生成,存在尖晶石晶核的生长困难,还有产物随之进行扩散的困难。上图给出氧化镁和氧化铝反应生成尖晶石过程的示意图。由图可见,当MgO和Al2O3两种晶体加热后,在接触面上局部生成一层MgAl2O4。反应的第一阶段是生成MgAl2O4晶核,晶核的生成是比较困难的,这是因为:首先,反应物和产物的结构有明显的差异,其次是生成物涉及大量结构重排。在这些过程中化学键必须断裂和重新组合,原子也需要作相当大距离(原子尺度的)的迁移等。一般认为,MgO中Mg2+和Al2O3中的Al3+本来被束缚在它们固有的格点位置上,欲使它们跳入邻近的空位是困难的。仅在极高温度时,这些离子具有足够的热能使之能从正常的格位上跳出并通过晶体扩散。当然MgAl2O4的成核可能也包括这样一些过程:氧负离子在未来的晶核位置上进行重排,与此同时,Mg2+和Al3+通过MgO和Al2O3晶体间的接触面互相交换。,.,虽然成核过程是困难的,但随后进行的反应扩散过程(包括产物的增长)却更为困难。为使反应进一步进行并使产物MgAl2O4层的厚度增加,Mg2+和Al3+离子必须通过已存在的MgAl2O4产物层,正确的发生相互扩散达到新的反应界面。在此阶段有2个反应界面:MgO和MgAl2O4之间以及MgAl2O4和Al2O3之间的界面。因为Mg2+和Al3+通过扩散达到和离开这些界面是进一步反应的速率控制步骤,扩散速率很慢,所以反应即使在高温下进行也很慢,而且其速率随尖晶石产物层厚度增加而降低。下图是NiO和Al2O3多晶颗粒生成尖晶石NiAl2O4时产物层厚度x与温度和时间的关系。在三种不同温度下,x2对时间的图是直线,可以预料,随着温度的增高,反应速率增加得很快。总反应:4MgO+4Al2O3MgAl2O4,.,固体反应的过程,100,200,0,20,15,10,5,0,1500C,1400C,1300C,时间/h,x2106/cm2,以上结果是考查单晶NiO和Al2O3反应生成NiAl2O4的过程得出的。,反应量与时间和温度的关系,.,Wagner机理:上述MgO和Al2O3的反应机理,涉及Mg2+和Al3+离子通过产物层的相对扩散,然后在两个反应物-产物界面上继续反应。为使电荷平衡,每有3个Mg2+扩散到右边界面,就有2个Al3+离子扩散到左边界面,在理想情况下,在两个界面进行的反应可以写成如下的形式:界面MgO/MgAl2O42Al3+-3Mg2+4MgOMgAl2O4界面MgAl2O4/Al2O33Mg2+-2Al3+4Al2O33MgAl2O4从上面反应过程,明显可以看出高温固相反应法存在许多欠缺,反应只能在界面进行,随后的扩散过程也十分困难;反应最终得到的反应物和产物是一个混合体系,极难分离和提纯;即使反应进行得很完全,也很难得到一个纯相的体系;高温反应条件苛刻,还存在容器污染的问题。正由于这样,固体制备反应朝着2个方向发展,一个是极端条件下的物理方法,譬如超高温(1600)、高压和超高压、电离辐射、射频、激光、冲击波等;另一个方向是向缓和的条件发展,成为软化学(SoftChemistry)法。,.,实验过程,混合:研磨:20MPa石英晶体生长及功能氧化物或复合氧化物等(1)装满度指反应混合物占密闭反应釜空间的体积分数直接关系安全及实验成败。实验中既要保持反应物处于液相传质的反应状态,又要防止由于过大的装满度而导致的过高压力。一般标准:6080;80以上在240C下压力有突变,.,Li+,溶剂热合成方法的发展,1985年,Bindy首次在“Nature”杂志上发表文章报道了高压釜中利用非水溶剂合成沸石的方法,拉开了溶剂热合成的序幕。到目前为止,溶剂热合成法已得到很快的发展,并在纳米材料制备中具有越来越重要的作用。在溶剂热条件下,溶剂的物理化学性质如密度、介电常数、粘度、分散作用等相互影响,与通常条件下相差很大。,.,Li+,相应的,它不但使反应物(通常是固体)的溶解、分散过程及化学反应活性大大增强,使得反应能够在较低的温度下发生,而且由于体系化学环境的特殊性,可能形成以前在常规条件下无法得到的亚稳相。该过程相对简单、易于控制,并且在密闭体系中可以有效地防止有毒物质的挥发和制备对空气敏感的前驱体和目标产物;,.,Li+,另外,物相的形成,粒径的大小、形态也能够有效控制,而且产物的分散性好。更重要的是通过溶剂热合成出的纳米粉末,能够有效避免表面羟基存在,使得产物能稳定存在。作为反应物的盐的结晶水和反应生成的水,相对于大大过量的有机溶剂,水的量小得可以忽略。,.,Li+,在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或水中氧的污染;非水溶剂的采用使得溶剂热法可选择原料的范围大大扩大,比如氟化物,氮化物,硫化合物等均可作为溶剂热反应的原材料;同时,非水溶剂在亚临界或超临界状态下独特的物理化学性质极大地扩大了所能制备的目标产物的范围;,与水热法相比,溶剂热法具有以下优点:,.,Li+,由于有机溶剂的低沸点,在同样的条件下,它们可以达到比水热合成更高的气压,从而有利于产物的结晶;由于较低的反应温度,反应物中结构单元可以保留到产物中,且不受破坏,同时,有机溶剂官能团和反应物或产物作用,生成某些新型在催化和储能方面有潜在应用的材料;,.,Li+,尽管水热合成的技术优势很显著,国内外也取得了很多研究成果,但它的缺陷也比较明显的,其中最为突出的是反应周期长。在水热合成技术上发展新技术。,超临界水热合成法微波水热法,.,Li+,超临界水热合成,超临界流体(SCFSCF)是指温度及压力都处于临界温度和临界压力之上的流体。,在超临界状态下,物质有近于液体的溶解特性以及气体的传递特性:,粘度约为普通液体的0.10.01;扩散系数约为普通液体的10100倍;密度比常压气体大102103倍。,.,Li+,超临界流体拥有一般溶剂所不具备的很多重要特性。SCF的密度、溶剂化能力、粘度、介电常数、扩散系数等物理化学性质随温度和压力的变化十分敏感,即在不改变化学组成的情况下,其性质可由压力来连续调节。能被用作SCF溶剂的物质很多,如二氧化碳、水、一氧化氮、乙烷、庚烷、氨等。超临界流体相图,如下图所示。,.,Li+,超临界流体相图,.,Li+,超临界水(SCW)是指温度和压力分别高于其临界温度(647K)和临界压力(22.1MPa),而密度高于其临界密度(0.32g/cm3)的水。,在一般情况下,水是极性溶剂,可以很好的溶解包括盐在内的大多数电解质,对气体和大多数有机物则微溶或不溶。但是到达超临界状态时,这些性质都发生极大的变化:,.,Li+,SCW具有特殊的溶解度、易改变的密度、较低的粘度、较低的表面张力和较高的扩散性;SCW与非极性物质如烃类、戊烷、己烷、苯和甲苯等有机物可完全互溶,氧气、氮气、CO、CO2等气体也都能以任意比例溶于超临界水中;但无机物,尤其是无机盐类,在超临界水中的溶解度很小;超临界水还具有很好的传质、传热性能。,.,Li+,通常条件下,水的密度不随压力而改变,而SCW的密度既是温度的函数,又是压力的函数,通过改变温度和压力可以将SCW控制在气体和液体之间,温度或压力的微小变化就会引起超临界水的密度大大减小。在常温常压下,水的密度为1.0g/cm3,当温度和压强变化不大时,水的密度变化不大。,.,Li+,.,Li+,超临界水热合成技术是将超临界流体技术引入了传统的水热合成方法中。超临界水热合成广泛用于制备金属氧化物及其复合物,形成了其特殊的技术优越性:,工艺条件,制备方法,设备加工要求都简单易行,能量消耗相对较低;产品微粒的粒径可以通过控制反应的过程参数加以有效控制,便捷易行。参数不同,可以得到不同粒径大小和分布范围的超细颗粒,并且微粒粒径分布范围较窄;,.,Li+,该技术利用了超临界流体良好的物化性质,整个实验过程无有机溶剂的参与,环保性能良好,是可持续发展的“绿色化学”;与一般的水热合成方法相比,物料在反应器内混合,瞬间达到反应所要求的温度和压力,反应时间很短。生成的金属氧化物在超临界水中的溶解度很低,全部以超细微粒的形式析出。,.,Li+,微波水热合成,微波水热法是美国宾州大学的RoyR提出的,已对多种纳米粉体的合成进行了研究,引起国内外广泛重视。微波水热的显著特点是可以将反应时间大大降低,反应温度也有所下降,从而在水热过程中能以更低的温度和更短的时间进行晶核的形成和生长,反应温度和时间的降低,限制了产物微晶粒的进一步长大,有利于制备超细粉体材料。,.,Li+,微波加热是一种内加热,具有加热速度快,加热均匀无温度梯度,无滞后效应等特点。微波对化学反应作用是非常复杂的;但有一个方面是反应物分子吸收了微波能量,提高了分子运动速度,致使分子运动杂乱无章,导致熵的增加,降低了反应活化能。凝聚液态物质在微波场中的行为与其自身的极性密切相关,也就是与物质的偶极矩在电场中的极化过程密切相关。,.,Li+,水热与溶剂热合成的原理,水热法常用氧化物或者氢氧化物或凝胶体作为前驱物,以一定的填充比进入高压釜,它们在加热过程中溶解度随温度升高而增大,最终导致溶液过饱和,并逐步形成更稳定的新相。反应过程的驱动力是最后可溶的前驱体或中间产物与最终产物之间的溶解度差,即反应向吉布斯焓减小的方向进行。,.,Li+,水热生长体系中的晶粒形成可分为三种类型,“均匀溶液饱和析出”机制“溶解-结晶”机制“原位结晶”机制,.,Li+,“均匀溶液饱和析出”机制,由于水热反应温度和体系压力的升高,溶质在溶液中溶解度降低并达到饱和,以某种化合物结晶态形式从溶液中析出。当采用金属盐溶液为前驱物,随着水热反应温度和体系压力的增大,溶质(金属阳离子的水合物)通过水解和缩聚反应,生成相应的配位聚集体(可以是单聚体,也可以是多聚体)当其浓度达到过饱和时就开始析出晶核,最终长大成晶粒。,.,Li+,“溶解-结晶”机制,当选用的前驱体是在常温常压下不可溶的固体粉末、凝胶或沉淀时,在水热条件下,所谓“溶解”是指水热反应初期,前驱物微粒之间的团聚和联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进入溶液,进而成核、结晶而形成晶粒;,.,Li+,“原位结晶”机制,当选用常温常压下不可溶的固体粉末,凝胶或沉淀为前驱物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转变为结晶态。,.,Ni2+-Fe3+-Co2+CO32-LDHs,室温加入,充分搅拌,150C水热处理2d,洗涤、过滤、室温干燥,例:正电性镍铁钴层状材料的制备,.,XRDpatternsandSEMimagesofCo2+-Ni2+-Fe3+CO32LDHsmaterialswithdifferentCo2+/Ni2+/Fe3+molarratios,(a)1.5:2:1,(b)0.5:3:1,and(c)0.5:3.5:1(:Co(CO3)0.50.1H2O).,.,.,.,一些材料常压相和高压相的比较,.,高温高压合成,热压装置示意图,MgO粉体热压致密过程,.,在热压过程中,最重要的是模型材料的选择,最常用的是石墨,但根据用途也有选择Al2O3和SiC。这种方法的缺点是加热、冷却时间长,烧结体须进行后加工,生产效率低,只能生产形状不太复杂制品,可制备强度很高的陶瓷车刀。以Si3N4为例介绍热压烧结法,在Si3N4粉末中,假如MgO等添加剂,在1700C下是以30MP的压力,可达到致密度。但Si3N4和石墨模具之间可发生反应,在表面生成SiC,所以在石墨模具的内侧涂一层BN,可防止反应且有利于脱模。,.,5.小颗粒粉体制备法,制备无机材料的传统方法高温固体扩散法,颗粒大,形貌不易控制科学技术的发展,不仅对材料的物相有要求,对粉体的形貌也有要求制备纳米尺度的小颗粒是当前的热门课题制备纳米颗粒的方法很多,这里仅举几例,.,溶胶-凝胶法(sol-gel法),无机材料中很多是硅酸盐、钛酸盐、铌酸盐等,这些材料的酸根离子都有水解形成三维网状结构的性质,为该方法的实现提供了可能该方法可使反应原料在原子水平上混匀,加快反应速度,降低反应温度一般以醇盐为原料,在适当的pH下水解,随后缓慢脱水示意反应式水解:M1-(OR)n+nH2OM1-(OH)n+nROHM2-(OR)n+mH2OM1-(OH)m+mROH缩聚:M1-(OH)n+M2-(OH)m(OH)n-1-M1-O-M2-(OH)m-1逐渐缩聚成为三维网状结构,.,溶胶-凝胶法(sol-gel法),控制条件缓慢水解干燥,可以制成均匀透明的光学玻璃干燥到一定程度加热脱水,可以制成纳米粉体(几十纳米到几百纳米)利用纳米粉体可以经过低温快速烧结获得致密陶瓷一些固相反应不能得到的低温物相可以利用这种方法获得,如X1-Y2SiO5制备薄膜,.,溶胶凝胶法制备Y2SiO5低温相由低高温相的相变温度为1100C,一般比较趋于采用高温相,发光性能好,在1500C以上可直接合成Y2O3+SiO2(无定形)Y2SiO5硅酸乙酯+硝酸钇低温物相,1300C-1500C,水解,烘干,1100C,(高温相),.,Pb(1-3x/2)Eux(Zr(0.52),Ti(0.48)O3纳米粉的溶胶-凝胶法合成:Pb(OAc)23H2O+ZrO(NO3)22H2O,乙二醇,80C,30min,TiO(C4H9)4,减压蒸馏2h,Eu(NO3)3乙醇溶液,80C,2h,干燥,烧结,产物,.,溶胶凝胶制备纳米粒子的弊端:,纳米粒子之间容易发生硬团聚软团聚:纳米颗粒之间以VanderWaals力连接形成的团聚颗粒分散较容易硬团聚:颗粒之间以共价键形式连接形成的团聚颗粒分散困难,.,微乳液是由两种液体液1+液2+表面活性剂+助表面活性剂混合后形成透明的、热力学稳定的体系,由此体系制备的颗粒小于10-7m,有散射,即丁达尔效应。微乳液一般由四种组份组成,即表面活性剂、助表面活性剂(一般为脂肪醇)、有机溶剂(一般为烷烃或环烷烃)和水.与热力学不稳定的普通乳状液相比,它是一种热力学稳定的分散体系,由大小均匀的、粒径在10-20nm左右的小液滴组成。微乳液组成确定后,液滴的粒径保持定值。由于在液滴内可增溶各种不同的化合物,微乳液的小液滴特别适合做反应介质。,微乳液法,.,微乳液法,乳浊液:液1+液2+表面活性剂,微米液滴,热力学亚稳态,不透明或半透明微乳液:液1+液2+表面活性剂+(助表面活性剂),液滴0.1m,热力学稳定态,透明,丁铎尔效应,选择合适微乳体系BaFe12O19为例,表制备BaFe12O19纳米粉体的微乳液组成表:,.,微乳液法,微乳液I,微乳液II,将微乳液I和II混合,水相(NH4)2CO3,水相Ba(NO3)2&Fe(NO3)3,微乳液滴的碰撞、结合,沉淀生成(碳酸钡铁沉淀),沉淀,微乳液法制备纳米分体示意图,体积比例大的液体为连续相,比例小的液体为分散相,表面活性剂处于两种液相的界面上。,.,微乳液法可用于纳米材料的制备如:SnO,ZnO,TiO2等,.,溶剂蒸发法,采用液相法制备粉体中,沉淀法会生成凝胶状沉淀,难以洗涤和过滤,沉淀剂会作为杂质混入粉料中;采用可以分解的NH4OH、(NH4)2CO3作为沉淀剂,可以同一些阳离子生成络离子,水洗过程中会导致部分沉淀物再溶解。由于存在上述缺陷,所以又开发出了溶剂蒸发法。将溶液分散成小滴,在溶剂的蒸发过程中保持溶液的均匀性,使组分偏析最小的合成方法。,.,金属盐溶液,冷冻液体,(至低温液体中),溶剂升华,(至热风中),溶剂蒸发,(至高温液体中),溶剂蒸发,金属盐颗粒,氧化物颗粒,(至高温气体中),溶济蒸发热分解,冷冻干燥法,喷雾干燥法,热煤油干燥法,喷雾热分解法,溶剂蒸发法,.,a.冷冻干燥法,将金属盐水溶液喷到低温有机液体上,(干冰、丙酮、己烷),使液滴进行瞬时冷冻,然后在低温降压条件下升华、脱水,再通过分解制得粉料,即冷却。采用这种方法能制得组成均匀、反应性和烧结性能良好的微粉。“阿波罗”号航天飞机上所采用燃料电池中掺Li的NiO阳极,就是采用冷冻干燥和喷雾干燥法制备的,在150C以下就显示出很强的活性。由于在冷冻干燥过程中液体不收缩,而生成粉料的表面积大,表面活性也高。,.,TMA+挿入後直接凍結乾燥,異条件下試料SEM写真,.,b.喷雾热分解法,将金属盐溶液直接喷入高温气氛中,立即引起溶剂的蒸发和金属盐的热分解,从而直接合成氧化物的方法。连续操作性强,有希望用于复合氧化物系列超微粉的制备。目前制得的大致有几十种,如BaTiO3、CoFe2O4、PbCrO4、CoAl2O3、Y2SiO5、MnFe2O4、Y3Al5O12等,各自的粒径和分布范围有一定差别。,.,.,气相法,PVD将原料加热至高温,使之气化后,在温度差别较大的环境中急冷,凝聚成微粉状物料的方法。采用这种方法能制备直径在50-1000范围的微粉,可用于制备单一的、复合的氧化物、碳化物或金属微粉。CVD法是挥发性金属化合物的蒸气通过化学反应合成所需物质的方法。,.,气相法的特点(1)金属化合物原料具有挥发性、易提纯,产品无需粉碎、纯度高。(2)颗粒分散性好。(3)通过控制条件,可制得颗粒直径分布范围较窄的微细粉末。(4)容易控制气氛。,.,气相法可制备氧化物、金属、氮化物、碳化物、硼化物等。炭黑、ZnO、TiO2、SiO2、Sb2O3、Al2O3等微粉的制备已达到工业生产的水平。下面以TiO2微粉的制备为例来说明CVD法制备微粉的机理。,TiCl4+H2OTi(OH)4+4HClTiO2+H2O900C以上,金红石,.,CVD法制备TiO2微粉,TiCl4+4H2OTi(OH)4+4HClTiO2+2H2O,.,控制颗粒直径a.通过物质平衡常数的条件控制,,b.通过反应条件控制成核速度和成长速度,进而控制颗粒直径c.反应物过饱和度大,产物颗粒容易出现二维生长。,.,年后美国麻省理工学院陶瓷研究室特点:能形成非常有限的狭小加热空间,所以所有的分子无论从时间上还是从温度上均可以获得同等的几率,并且能控制各种参数,能消除反应壁的影响。Si3N4,SiC,Si/C/N纳米粉的制备,激光法,.,6.烧结过程(sintering),粉末:荧光粉,塑料添加剂薄膜:一些光学、电学材料单晶:激光晶体、非线性光学晶体等陶瓷:导电材料、介电材料、磁性材料等无机材料制备不仅要获得相应的物相,还要获得合适的形态,无机材料的应用形态,烧结过程,烧结是陶瓷材料制备过程中的重要环节烧结过程:*颗粒间接触面积扩大,并逐渐形成晶粒间界*连通气孔孤立气孔绝大部分气孔从配体中排出*最终形成致密,有一定强度,几何形状,物理性能的整体,.,烧结温度:7080%材料的熔点温度,在该温度下,烧结体系颗粒长大,表面能降低,物质自发地填充晶粒间隙使材料致密化,表面能降低是推动烧结进行地基本动力。,.,7.薄膜的制备,阴极溅射法,物理方法,薄膜形态的材料在现代科学技术中十分重要,特别是对电子元器件的微型化起着关键的作用,真空蒸发法,-V+,惰性气体入口,阴极及靶材,衬底及阳极,抽气口,接真空泵,蒸发源,衬底,钟罩,磁控溅射仪,真空:10-110-2mmHg,真空:10-6mmHg,.,7.薄膜的制备,溶胶-凝胶法制备Sc-ZrO2离子导体薄膜溶胶:Sc(NO3)3+ZrOCl+H2O+乙醇+聚乙二醇(PEG)旋涂制膜:溶胶+Si基片脱水:400C烧结:900C,化学方法,旋涂仪,.,7.薄膜的制备,化学方法,制备Y2O3:Eu3+荧光膜原料:稀土乙酰丙酮络合物Yacac+Euacac溶剂:乙酰丙酮+异丙醇喷雾制膜:450C-500C热台高温烧结:1300C,喷雾热分解法(SprayPyrolysis),载气:N2,CO2或空气,溶液,喷雾器,衬底,热台(450500C),喷雾热分解法示意图,.,8.单晶的制备,很多材料是以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年光伏电站智能运维系统在光伏电站环境监测中的应用报告
- 2025年乡村文化旅游产业链协同创新策略研究-文旅融合视角下的创新发展报告
- 高处作业安全防护考试题
- 2025年双方签字即刻让合同产生法律效力
- 2025年进城教师招聘试题及答案
- 玻纤拉丝工节假日后复工安全考核试卷含答案
- 2025年特种设备起重机作业人员理论考试笔试试题(附答案)
- 插花花艺师节假日后复工安全考核试卷含答案
- 茶艺师证考试监考试题
- 全科伤寒考试题
- 《归园田居(其一)》《登高》《梦游天姥吟留别》联读课件 统编版高中语文必修上册
- 【语法】形容词的最高级-完整版课件
- 企业职工基本养老保险待遇申报表
- 幼儿园大班数学:《层级分类》 课件
- 质量管理体系建立运行情况报告
- 涉河建设项目审查管理体会及探讨课件-涉河建设项目管理及建设方案审查技术标准课件
- DB44∕T 1168-2013 轮扣式钢管脚手架构件
- 世界汽车工业课件
- 单层工业厂房设计(全部)PPT课件.ppt
- 第二章_平面机构的平衡
- elements-of-communication
评论
0/150
提交评论