变化率与导数-_第1页
变化率与导数-_第2页
变化率与导数-_第3页
变化率与导数-_第4页
变化率与导数-_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人民教育出版社高中数学,1.1变化率与导数,.,微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。,微积分简介,.,到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。,微积分的创立,.,十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。,微积分的创立,.,十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。,微积分的创立,.,牛顿,莱布尼茨,.,牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。,微积分的创立,牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。,.,人民教育出版社高中数学,1.1变化率与导数,.,1、变化率问题,.,问题一:气球膨胀率,很多人都吹过气球,可以发现,随着气球空气容量的增加,气球的半径增加得越来越慢。从数学的角度,如何解释这个现象呢?,空气容量从0增加到1时,气球的平均膨胀率为:,空气容量从1增加到2时,气球的平均膨胀率为:,气球的平均膨胀率减小了,所以我们感觉气球变大得越来越慢。,.,思考:空气容量从V1增加到V2时,气球的平均膨胀率是多少?,.,问题二:高台跳水,在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系,如果用运动员在某段时间内的平均速度描述其运动状态,那么:,(1)在0t0.5这段时间里,,(2)在1t2这段时间里,,.,计算运动员在这段时间里的平均速度,并思考以下问题:,(1)运动员在这段时间是静止的吗?,(2)你认为用平均速度描述运动员的运动状态有什么问题吗?,答:(1),(2)平均速度不能准确反映该段时间的运动状态.,.,式子称为函数f(x)从x1到x2的平均变化率.,若设,则平均变化率为,这里,我们称x是相对于x1的一个增量(也叫做自变量的增量),可用x1+x代替x2,同理y叫做函数值的增量,可用y1+y代替y2,注意:x(y)是一个整体,可正可负!,.,于是,函数f(x)从x1到x2的平均变化率等于函数值的增量/自变量的增量,即,.,根据平均变化率的定义:你认为其几何意义是什么?,平均变化率表示直线AB的斜率,.,例题讲解,例1已知函数f(x)=x2,分别计算在下列区间上,f(x)的平均变化率.(1)1,3;(2)1,2;(3)1,1.1,.,例题讲解,例2求函数y=5x2+6在区间2,2+x上的平均变化率.,步骤:,.,例题讲解,例2求函数y=5x2+6在区间2,2+x上的平均变化率.,所以平均变化率为,.,课堂练习,1、一质点运动的方程为s=1-2t2,则在一段时间1,2内的平均速度为()A.-4B.-8C.-6D.62.设函数y=f(x),当自变量x由x0改变到x0+x时,函数的该变量为()A.f(x0+x)B.f(x0)+xC.f(x0)xD.f(x0+x)-f(x0),C,D,.,瞬时速度:物体在某一时刻的速度,2、瞬时变化率,在高台跳水中,函数关系是h=-4.9t2+6.5t+10,如何求t=2时的瞬时速度?,计算函数在2,2+t内的平均速度,.,2、瞬时变化率,瞬时速度:,思考:,(1)如何求瞬时速度?,先求平均速度,再取极限,(2)lim是什么意思?,在其下方的条件下,求后边的极限,(3)如何求运动员在某一时刻t0时的瞬时速度?,.,1、函数f(x)在x0,x0+x的平均变化率怎么表示?,2、函数f(x)在x=x0处的瞬时变化率怎么表示?,.,导数的定义,函数y=f(x)在x=x0处的瞬时变化率是,称为函数y=f(x)在x=x0处的导数,记作,或,.,导数的几何意义:函数的瞬时变化率,导数的物理意义:物体的瞬时速度,.,总结提升,1、f(x0)与x0的值有关,不同的x0,其导数值一般也不同;,2、f(x0)的值与x的值无关;,3、瞬时变化率和导数是同一概念的两个名称.,.,求函数y=f(x)在x=x0处的导数的步骤:,(1)求函数的增量,(2)求平均变化率,(3)取极限,一差二比三极限,.,例1.(1)求函数y=3x2在x=1处的导数;,(2)求函数f(x)=-x2+x在x=-1附近的平均变化率,并求出在该点处的导数;,(3)质点运动规律为s=t2+3,求质点t=3的瞬时速度。,解:(1),=6,.,例1.(1)求函数y=3x2在x=1处的导数;,(2)求函数f(x)=-x2+x在x=-1附近的平均变化率,并求出在该点处的导数;,(3)质点运动规律为s=t2+3,求质点t=3的瞬时速度。,解:(2),所以平均变化率为,.,例1.(1)求函数y=3x2在x=1处的导数;,(2)求函数f(x)=-x2+x在x=-1附近的平均变化率,并求出在该点处的导数;,(3)质点运动规律为s=t2+3,求质点t=3的瞬时速度。,解:(3),.,例2、已知函数在x=x0处附近有定义,且,求x0的值。,.,例3将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第xh时,原油的温度为y=f(x)=x27x+15(0x8).计算第2h与第6h时,原油温度的瞬时变化率,并说明它们的意义.,解:在第2h和第6h时,原油温度的瞬时变化率就是,和,根据导数的定义,.,所以,同理可得,在第2h和第6h时,原油温度的瞬时变化率分别为3和5.它说明在第2h附近,原油温度大约以3/h的速率下降;在第6h附近,原油温度大约以5/h的速率上升.,.,(1)求函数f(x)=1/x在x=1处的导数;,(2)已知函数f(x)=ax2+c,且f(1)=2,求a.,.,1.已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+x,-2+y),则=()A.3B.3x-(x)2C.3-(x)2D.3-x,D,2.如图,函数y=f(x)在A,B两点间的平均变化率是(),A.1B.-1C.2D.-2,B,.,2.求函数的平均变化率的步骤:(1)求函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论