




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,第十章机械振动,定义,振动:任何一个物理量在某一数值附近作周期性的变化,称为振动;,机械振动:物体在一定位置附近作来回往复的运动,称为机械振动。,简谐振动;,简谐振动合成;,阻尼振动、受迫振动、共振。,主要内容,.,一、简谐运动(SimpleHarmonicMotion),物体在一定位置附近的位移变化满足简谐函数形式,称为简谐运动。,弹簧振子单摆复摆,二、基本特征,以弹簧振子为例,振子受力是,由牛顿第二定律得,.,物体受力和加速度与位移x成正比,且方向相反(动力学特征),式中:,上式可以改写为微分方程形式,其解为,式中A、是待定常数,此式称为简谐运动的运动方程。,(称为角频率),.,位移x按余弦函数的规律随时间变化(运动学特征),三、简谐运动的速度与加速度,速度:,加速度:,位移x、速度、加速度a三者与时间t的关系如图所示。,.,四、描述简谐振动的物理量,2.周期(Priod),1.振幅(Amplitude),离开平衡点的最大量值的绝对值。,给出振动量的变化幅度。,注意:A、A、2A分别是位移、速度、加速度振幅。,完成一次全振动所需的时间T,单位是秒(s)。,.,表示:由运动方程,简谐运动的周期是决定于系统自身的常量,又称为固有周期(naturalneriod)。,3.频率(Frequency),物体单位时间内做完全振动的次数称为振动频率,单位是赫兹(Hz)。,表示:由定义可知,.,式中是角频率,单位是rads-1,频率只与振动系统自身性有关,也称为固有频率(naturalfrequency)。,4.相位与初相位(phaseandinitialphase),一是振动的周期性由相位来反映;二是相位确定了振动物体运动状态。,t+称为相位,称为初相位,单位是rad。,1o相位的意义是:,.,2o初相j,由开始时刻振动物体的运动状态决定,由运动方程可知:t=0时刻,5.相位差(phasefifference),两个简谐振动的相位之差称为相位差,用j表示,.,表示:,1oj反映两振动的步调情况:,j=0(或2整数倍),同步振动,j=(或奇数倍),振动步调相反,j0,x2振动超前;j0,x1振动超前,.,2o两振动到达同一状态的时间差是,五、旋转矢量(rotationalvector),在x轴上的投影为:,矢径A与x轴夹角为:,x=Acos(wt+j),(wt+j),.,以弹簧振子为例:,.,1o动能与势能均为时间的函数,位相差为/2,二者可以相互转化,总能量是与时间t无关的恒量。,能量随时间变化,能量随空间变化,.,2o,考察一个周期内的动能与势能平均值,在一个周期内的平均动能与平均势能相等,各是总能量的一半。,.,一、同频率同方向简谐振动合成,合振动位移x就是x1与x2的代数和,特点:1=2=,x1/x2,表示:对如下两个振动,.,合成结果为频率为w的简谐振动,由旋转矢量法得出A、是:,.,则:,则:,合振幅最大,合振幅最小,.,当A1=A2时:,合振幅最小值是0。,合振幅最大值是2A1;,则A在上述两者之间。,二、相互垂直同频率简谐振动的合成,特点:1=2=,对如下两个振动,合成得到质点的轨迹方程是,.,质点沿1、3(2、4)象限直线作简谐振动。,.,质点轨迹正椭圆,质点轨迹是任意形状椭圆。,.,一、阻尼振动(dampedvibration),振幅随时间减小的振动称为阻尼振动。,1.阻尼模型,摩擦阻尼:,摩擦阻力使振动系统能量逐渐转化为热能,辐射阻尼:,振动系统引起临近质点的振动,使系统能量逐渐向四周辐射,阻尼模型,称为阻尼系数,条件:适用于物体低速运动情况,.,2.阻尼振动方程,以弹簧振子为例,阻尼振动微分方程,或写为,定义固有角频率0和阻尼因子,有,.,通解:,(1)欠阻尼振动,令,A与由初始条件确定,方程的解可写成,3.三种阻尼形式,这时是准周期性振动:,.,由通解,两项都衰减,不是周期振动,不能往复运动。,如单摆放在粘滞的油筒中摆到平衡位置须很长时间。,(2)过阻尼振动,(3)临界阻尼振动,方程解,衰减函数,.,临界阻尼达到平衡位置的时间最短,但仍不能超过平衡位置。,三种阻尼振动比较,欠阻尼,过阻尼,临界阻尼,.,弹性力,阻尼力,驱动力,二、受迫振动(forcedvibration),物体在周期性外力持续作用下发生振动,称为受迫振动,这个外力称为驱动力,以弹簧振子为例,振子受力有,则运动方程是,.,式中,受迫振动方程的解为,此式表明:,第一项为阻尼振动项,当时间较长时衰减为0。,第二项为驱动力产生的简谐运动。,当系统达到稳定状态后,方程的解是,.,稳定的受迫振动是一个与驱动力同频率的余弦振动,其振幅和初相是,.,二、共振(resonance),当驱动力频率接近或等于系统固有频率时,受迫振动振幅急剧达到最大值的现象称为共振,其频率称为共振频率。,由表达式,利用关系,.,共振频率与系统自身性质和阻尼常数有关。,相应的最大振幅和共振频率是,共振危害;,共振利用。,.,证明:在小角度下单摆作简谐运动。,证明:,1、细线质量不计,3、阻力不计,质点重力矩:,质点动量矩:,由动量矩定理,.,方程的解是:,其中,单摆的周期是,.,1.、的确定:,2.(结合周期T,结合旋转矢量法):,3.振动方程:,4.振动合成:,5.振动能量:,.,一水平弹簧振子做简谐振动,振幅A=410-2m,周期T=2s,t=0时,,试分别写出这两种情况下的振动方程。,解:1由初始条件,1,且向负方向运动;,2,且向正方向运动;,.,2同理:,说明:利用旋转矢量法可以更方便求解初始相位。,v00,A/2,-A/2,如图:,.,已知一简谐振动曲线,求振动方程.,解:由图可知,t=5,x=0:,.,一质点作简谐振动,其振动方程(SI),试用旋转矢量法求出质点由初始状态(t=0的状态)运动到x=-0.12,0的状态所需最短时间t。,解:由振动方程可知,.,一质点沿x轴作简谐振动,其圆频率,试写出以下初始状态下的振动方程:其初始位移,初始速度,解:设振动方程为:,.,位移是振幅一半时,动能和势能各是总能量的多少?在什么位置动能和势能各是总能量的一半?,解:(1)x=A/2代入中,(2),.,弹簧振子沿x轴做简谐振动,其振动的最大位移xm=0.3m,最大恢复Fm=1.2N,最大速度m=1.2ms-1。t=0时刻的初位移是,且方向同x轴正方向一致。,求:1振动能量;2振动方程.,解:1,.,2由初始条件,一弹簧振子沿x轴做简谐振动,已知其振动的最大位移xm=0.3m,最大恢复力Fm=1.2N,最大速度m=1.2ms-1.当t=0时的初位移,且方向同x轴正方向一致.求:1振动能量;2振动方程.,.,求:全振动表达式。,一物体同时参与同一直线上的两个简谐振动,其方程分别为:(SI),解:直接考察两个振动位相差:,.,一质点在x轴做谐振动,周期为T,当质点从A/2处运动到A处时经历的最短时间为A(A)T/12(B)T/6(C)T/8(D)T/24,解:,x,.,一质点沿x轴作简谐振动,振动方程为(SI),从t=0时刻起,到质点位置在x=-2cm处,且向x轴正方向运动的最短时间间隔为Cs。(A)1/8(B)1/4(C)1/2(D)1/6,解:,.,一质点同时参与两个在同一直线上的谐振动,其振动方程分别为,cm,则关于合振动有结论B。(A)振幅等于1cm,初相等于;(B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物联网行业智能家居发展前景研究报告
- 2025年智能物流技术应用与未来发展前景研究报告
- 2025年智能农业技术在农村发展中的应用前景研究报告
- 2025年环保行业新型环保技术发展前景研究报告
- 乡镇残疾人之家托管运行合同范本7篇
- 宁波市2025年浙江宁波市商务局所属事业单位招聘3人笔试历年参考题库附带答案详解
- 四川省2025年四川天府新区考核招聘高层次产业人才(30人)笔试历年参考题库附带答案详解
- 吉安市2025江西吉安市井冈山市市场监督管理局招聘2人笔试历年参考题库附带答案详解
- 2025黑龙江鸡西卓运企业管理集团有限公司鸡西分公司招聘20人笔试参考题库附带答案详解
- 2025青海中煤地质工程有限责任公司(青海煤炭地质局)应届高校毕业生招聘20人笔试参考题库附带答案详解
- 《山水相逢》课件2025-2026学年人美版(2024)八年级美术上册
- 2025年芜湖市鸠江区医疗卫生事业单位公开招聘工作人员22名考试参考题库及答案解析
- 法警安全检查培训课件
- AI+智慧医院高质量发展 信息化建设方案
- 人员密集场所安全培训教学课件
- 村干部笔试试题及答案
- 项目管理业务知识培训课件
- 知识产权保护与运用培训课件
- 小猪逛果园课件
- 建筑业企业资质标准
- 2025年职业技能《模具钳工》理论知识考试试题(附答案)
评论
0/150
提交评论