




已阅读5页,还剩63页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,第二章自适应控制,自适应控制概述基本概念、解决的问题、分类及发展模型参考自适应控制系统描述可调系统的结构自适应控制律自校正控制最小方差自校正控制器极点配置自校正控制器自校正PID控制,.,2.1自适应控制概述,2.1.1自适应控制系统的功能及特点,研究对象:具有不确定性的系统,被控对象及其环境的数学模型不是完全确定的,生物能够通过自觉调整自身参数改变自己的习性,以适应新的环境特性,自适应控制的特点:研究具有不确定性的对象或难以确知的对象能消除系统结构扰动引起的系统误差对数学模型的依赖很小,仅需要较少的验前知识自适应控制是较为复杂的反馈控制,.,2.1自适应控制概述,2.1.2自适应控制系统的分类,(1)前馈自适应控制,前馈自适应控制结构图,与前馈反馈复合控制系统的结构比较类似,不同在于:增加了自适应机构,并且控制器可调,当扰动不可测时,前馈自适应控制系统的应用就会受到严重的限制。,.,2.1自适应控制概述,2.1.2自适应控制系统的分类,(2)反馈自适应控制,反馈自适应控制结构图,除原有的反馈回路之外,反馈自适应控制系统中新增加的自适应机构形成了另一个反馈回路.,.,2.1自适应控制概述,2.1.2自适应控制系统的分类,(3)模型参考自适应控制(MRAC),在参考模型始终具有期望的闭环性能的前提下,使系统在运行过程中,力求保持被控过程的响应特性与参考模型的动态性能一致。,模型参考自适应控制系统结构图,.,(4)自校正控制,2.1自适应控制概述,2.1.2自适应控制系统的分类,自校正控制系统结构图,自校正控制系统又称自优化控制或模型辨识自适应控制。,.,2.2模型参考自适应控制,2.2.1模型参考自适应控制的数学描述,模型参考自适应控制系统由参考模型、可调系统和自适应机构三部分组成.,目的:保证参考模型和可调系统间的性能一致性。,模型参考自适应控制系统结构图,.,广义误差向量不为0时,自适应机构按照一定规律改变可调机构的结构或参数或直接改变被控对象的输入信号,以使得系统的性能指标达到或接近希望的性能指标。,2.2模型参考自适应控制,2.2.1模型参考自适应控制的数学描述,参数自适应方案:通过更新可调机构的参数来实现的模型参考自适应控制。,信号综合自适应方案:通过改变施加到系统的输入端信号来实现的模型参考自适应控制。,模型参考自适应控制系统结构图,.,2.2.1模型参考自适应控制的数学描述,2.2.1.1并联模型参考自适应系统的数学模型,并联模型参考自适应系统可以用状态方程和输入输出方程进行描述。,一、用状态方程描述的模型参考自适应系统,(2.1),参考模型:,在可调参数模型参考自适应系统中,可调系统,(2.2),为广义误差向量,对于连续模型参考自适应控制系统,.,一、用状态方程描述的模型参考自适应系统,2.2.1.1并联模型参考自适应系统的数学模型,对于信号综合自适应方案的模型参考自适应系统中,系统模型,(2.3),对于离散模型参考自适应控制系统,.,二、用输入输出方程描述的模型参考自适应系统,2.2.1.1并联模型参考自适应系统的数学模型,参考模型,对于连续系统一般采用微分算子的形式表示,(2.7),(2.8),(2.9),在参数自适应方案中,可调系统的输入输出方程,(2.10),由广义误差通过自适应规律进行自适应调整,.,二、用输入输出方程描述的模型参考自适应系统,2.2.1.1并联模型参考自适应系统的数学模型,在信号综合自适应方案中,可调系统的输入输出方程为,(2.13),对于离散模型参考自适应控制系统输入输出方程可用下述几式描述,参考模型,(2.16),参数向量,信号向量,在参数自适应方案中,可调系统模型为,(2.19),可调参数向量,信号向量,.,模型参考自适应系统状态方程描述对比,连续模型参考自适应系统,(2.1),参考模型:,(2.2),在可调参数模型参考自适应系统中,可调系统,对于信号综合自适应方案的模型参考自适应系统中,系统模型,(2.3),离散模型参考自适应系统,(2.6),信号综合自适应方案的系统模型,.,模型参考自适应系统输入输出方程描述对比,连续模型参考自适应系统,参考模型:,在可调参数模型参考自适应系统中,可调系统,对于信号综合自适应方案的模型参考自适应系统中,系统模型,离散模型参考自适应系统,(2.7),(2.10),(2.13),参考模型,(2.16),在参数自适应方案中,可调系统模型为,(2.19),.,2.2.1.2模型参考自适应系统的设计要求,2.2.1模型参考自适应控制的数学描述,状态方程描述的模型参考自适应规律,其中,且,式中,矩阵称为线性补偿器,它的作用是为了满足系统稳定性所需附加的补偿条件。,.,2.2.1.3模型参考自适应系统的等价误差系统,2.2.1模型参考自适应控制的数学描述,等价误差系统:用误差向量作为状态变量的来表示模型参考自适应系统.,在以状态方程描述的参数自适应方案中,等价系统的状态向量是,等价误差系统:非线性时变反馈系统,线性部分,非线性部分,模型参考自适应控制系统的设计目标是使得广义误差向量(广义输出误差)逐渐趋向零值。,.,2.2.1.3模型参考自适应系统的等价误差系统,2.2.1模型参考自适应控制的数学描述,同理:离散系统的等价误差方程为,模型参考自适应系统的等价误差系统示意图,.,2.2.2采用Lyapunov稳定性理论的设计方法,2.2.2.1稳定性的一般定义,一个控制系统的稳定性,通常是指在外部扰动作用停止后,系统恢复初始平衡状态的性能。,若存在一状态向量,满足下式,则就是系统的一个平衡状态。,.,2.2.2.2Lyapunov意义下的稳定性概念,2.2.2采用Lyapunov稳定性理论的设计方法,二维情况下系统稳定性的几何解释,平衡状态是稳定的:,平衡状态是不稳定的:,平衡状态是一致稳定的:,(a)平衡状态稳定,(a)平衡状态不稳定,如式(2.29)描述的动态系统,若对任意给定的实数,存在另一个正数,使得当的系统响应在所有时间内都满足,则系统的平衡状态是稳定的。,如果对于平衡点和任意给定的邻域,找不到满足稳定条件的相对邻域,则系统在该平衡点是不稳定的,也称系统是不稳定的。,如果所取的邻域和与初始时刻无关,即对于任意的初始时刻稳定条件不变,则称该平衡状态是一致稳定的。,.,二维情况下系统渐近稳定性的几何解释,平衡状态是渐进稳定的:,2.2.2.2Lyapunov意义下的稳定性概念,2.2.2采用Lyapunov稳定性理论的设计方法,式(2.29)描述的动态系统,如果系统的平衡状态及初始点的解,满足当时,有,则称该平衡状态是渐进稳定的。,平衡状态是一致渐进稳定的:,如果平衡状态是渐进稳定的,且系统稳定性与初始时刻无关,则称系统是一致渐近稳定的。,平衡状态是全局渐进稳定的:,如式(2.29)描述的动态系统,如果系统的平衡状态,对状态空间中所有的初始状态,都满足,则称平衡状态是全局渐进稳定的。,.,2.2.2.3Lyapunov稳定性定理,2.2.2采用Lyapunov稳定性理论的设计方法,如果以代表能量,则物体从高能位向低能位的运动过程特征可以表示为:,Lyapunov虚构了一个以状态变量描述的能量函数,只要,且,不需要求解系统运动方程就可以判断系统的稳定性。,称函数为Lyapunov函数。,定义:,.,例:当为二维状态向量时,判断下列函数的特性,是正定的;,是半正定的;,是负定的;,是半负定的;,是不定的;,2.2.2.3Lyapunov稳定性定理,2.2.2采用Lyapunov稳定性理论的设计方法,若对称矩阵,对任何非零向量都满足,则矩阵就是正定矩阵。,补充概念:正定矩阵,判断正定矩阵的方法,求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。2.计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。,.,定理5.1(连续时间系统的Lyapunov稳定性定理),2.2.2.3Lyapunov稳定性定理,2.2.2采用Lyapunov稳定性理论的设计方法,对于系统,如果(1)存在正定函数(2)是半负定函数则称平衡状态是稳定的。,如果上述条件(2)改为:负定函数,或者对于系统的非零解,有不恒为零,则称平衡状态是渐近稳定的。,如果是渐近稳定的,且当时,有,则是全局渐近稳定的。,.,2.2.2.3Lyapunov稳定性定理,2.2.2采用Lyapunov稳定性理论的设计方法,定理5.2线性定常系统的Lyapunov稳定性定理,对于线性定常系统,(2.30),定理5.2证明,取Lyapunov函数,由于是正定矩阵,故是正定函数。又,即是渐近稳定的。,线性定常系统Lyapunov方程,为正定矩阵,.,2.2.2.3Lyapunov稳定性定理,2.2.2采用Lyapunov稳定性理论的设计方法,定理5.3(离散时间系统的Lyapunov稳定性定理),对于离散系统,如果(1)存在正定函数,(2),则称平衡状态是渐近稳定的。,如果是渐近稳定的,且当时,有,则是全局渐近稳定的。,线性离散系统Lyapunov方程,.,例应用Lyapunov稳定性定理分析一下系统的稳定性,2.2.2.3Lyapunov稳定性定理,2.2.2采用Lyapunov稳定性理论的设计方法,系统唯一的平衡状态是.,是半负定的。,可见,平衡状态是稳定的。,假设,那么对于,有.,当时,即,则。,因此,只有在状态空间的原点,.,对于状态空间中除原点以外的其它任何点,都不恒为零。所以该平衡状态是渐进稳定的。,因此,原点这个平衡状态是全局渐近稳定的。,.,2.2.2采用Lyapunov稳定性理论的设计方法,2.2.2.4采用Lyapunov稳定性理论的设计方法,模型参考自适应控制系统,(2.34),参考模型的状态方程为,可调系统的状态方程为,(2.35),(2.36),(2.37),设系统广义误差向量为,(2.38),得广义误差状态方程为,(2.39),.,2.2.2采用Lyapunov稳定性理论的设计方法,2.2.2.4采用Lyapunov稳定性理论的设计方法,假设,时,参考模型和可调系统达到完全匹配,即,代入到式(2.39)所示的广义误差状态方程中,并消去时变系数矩阵有,(2.39),(2.40a),(2.40b),.,2.2.2采用Lyapunov稳定性理论的设计方法,构造二次型正定函数作为Lyapunov函数,其中,都是正定矩阵,上式两边对时间求导,得,因为,则,(2.41),若选择,(2.42),.,2.2.2采用Lyapunov稳定性理论的设计方法,(2.42),2.2.2.4采用Lyapunov稳定性理论的设计方法,可得参数自适应的调节规律,(2.40b),由于为负定,因此按式(2.43)设计的自适应律,对于任意分段连续的输入向量能够使模型参考自适应系统是渐近稳定的。,.,2.3自校正控制,2.3.1概述,自校正控制系统由常规控制系统和自适应机构组成。,参数/状态估计器:根据系统输入输出数据在线辨识被控系统的结构或参数。,控制器参数设计计算:计算出控制器的参数,然后调整控制回路中可调控制器的参数。,自校正控制系统目的:根据一定的自适应规律,调整可调控制器参数,使其适应被控系统不确定性,且使其运行良好。,.,2.3自校正控制,模型参考自适应控制系统,自校正控制系统结构图,2.3.1概述,模型参考自适应控制和自校正控制系统结构的区别,模型参考自适应控制系统:常规控制系统自适应机构参考模型,自校正控制系统:常规控制系统自适应机构,.,2.3自校正控制,2.3.2动态过程参数估计的最小二乘法,2.3.2.1基本最小二乘方法,被控系统模型为一离散线性差分方程,(2.44),不可测随机干扰序列,为独立的随机噪声,要求其满足,(2.46c),(2.46b),(2.46a),随机噪声的均值为零,彼此相互独立,方差为有限正值,噪声的采样均方值有界。,.,(2.44),2.3.2动态过程参数估计的最小二乘法,2.3.2.1基本最小二乘方法,式(2.44)改写为向量形式,记:,(2.47),对输入输出观察了次,则得到输入输出序列为:,(2.48),.,2.3.2动态过程参数估计的最小二乘法,2.3.2.1基本最小二乘方法,(2.48),矩阵向量形式:,(2.49),(2.50),最小二乘参数估计原理就是从一组参数向量中找到的估计量,使得系统模型误差尽可能地小,即式(2.51)所示的性能指标最小。,(2.51),.,2.3.2动态过程参数估计的最小二乘法,2.3.2.1基本最小二乘方法,(2.49),(2.51),(2.52),(2.53),:未知参数的最小二乘估计。,随着测量得到的过程数据信息的增多,在利用基本最小二乘方法来完成每次的参数估计时,计算量将不断增大。,.,2.3.2动态过程参数估计的最小二乘法,2.3.2.2递推最小二乘方法,增加一个新的观测数据,则,(2.49),系统未知参数的最小二乘辨识公式,(2.54),(2.55),(2.56),.,(2.55),(2.56),2.3.2动态过程参数估计的最小二乘法,2.3.2.2递推最小二乘方法,(2.57),.,2.3.2动态过程参数估计的最小二乘法,2.3.2.2递推最小二乘方法,应用求逆矩阵定理,则,令,(2.61),令:,(2.62),.,则递推最小二乘算法公式(2.61)(2.63)可以表示为,2.3.2动态过程参数估计的最小二乘法,2.3.2.2递推最小二乘方法,(2.61),(2.62),(2.63),(2.64),为时刻系统未知参数的估计值。,通常:,.,2.3.2.3渐消记忆最小二乘方法,2.3.2动态过程参数估计的最小二乘法,随着观测数据和递推次数的增加,新的采样数据对参数估计值的修正作用会越来越微弱,最后甚至不再起到修正作用,即会出现所谓的“数据饱和”现象。,渐消记忆法:降低或限制过去数据的影响,提高新采集数据的修正作用.,基本思想是对过去数据乘上一个加权因子,按指数加权来人为地降低老数据的作用。,(2.66),渐消记忆递推最小二乘算法如下:,为遗忘因子,.,2.3.3最小方差自校正控制,最小方差自校正调节器是由瑞典学者Astrom和Wittenmark在1973年提出的。它是最早广泛应用于实际的自校正控制算法。,2.3.3.1最小方差预报和最小方差控制器设计,:分别为系统的输出、输入和噪声。,:单位后移算子。,(2.68a),(2.68b),(2.68c),为独立的随机噪声,要求其满足,(2.69a),(2.69a),(2.69a),假定为稳定多项式.,k时刻的控制作用u(k),可使k+d时刻的系统输出y(k+d)方差最小,因此将这种控制方法称为最小方差控制。,.,2.3.3.1最小方差预报和最小方差控制器设计,2.3.3最小方差自校正控制,引入最小方差控制器性能指标,(2.70),为时刻的理想输出(期望输出),表示为,(2.71),的最小方差预报应该满足:,.,2.3.3.1最小方差预报和最小方差控制器设计,2.3.3最小方差自校正控制,对k+d时刻系统模型,两边同乘,有:,结合Diophantine方程:,此时,预报值最小方差性能指标为:,是可实现的,(2.75),.,2.3.3.1最小方差预报和最小方差控制器设计,2.3.3最小方差自校正控制,(2.73),(2.75),(2.76),将式(2.76)代入到式(2.70)所示的性能指标中,有,时,式(2.70)达到最小值。,(2.78),最小方差控制律是通过使最优预报等于理想输出得到的。,对于调节问题,理想输出为零。因此最小方差调节律为,(2.79),.,2.3.3.1最小方差预报和最小方差控制器设计,2.3.3最小方差自校正控制,求取最小方差控制律的步骤如下:,2.根据Diophantine方程,求解和多项式的系数。,3.根据式(2.78)求出最小方差控制律,进而得出最优的。,1.根据被控系统的模型确定Diophantine方程中和的阶次。,.,2.3.3最小方差自校正控制,2.3.3.2最小方差自校正调节器,(2.75),令,(2.81),由于最小方差调节使,故调节器参数辨识方程为,.,2.3.3最小方差自校正控制,2.3.3.2最小方差自校正调节器,(2.81),(2.82),(2.83),令,(2.79),最小方差调节律:,式(2.81)和(2.79)可以分别表示为,采用最小二乘方法辨识得到,求取最优的。,.,最小方差自校正调节器的计算步骤如下:,2.3.3最小方差自校正控制,2.3.3.2最小方差自校正调节器,1.测取,并存储;,2.形成数据向量和;,3.采用递推最小二乘法获得估计参数;,4.根据式(2.83)求取;,(2.84),.,2.3.3最小方差自校正控制,2.3.3.3最小方差自校正控制器,(2.75),(2.76),(2.85),(2.86),(2.87),(2.88),当参考输出:,令,.,2.3.3最小方差自校正控制,2.3.3.3最小方差自校正控制器,最小方差自校正控制器的计算步骤如下:,1.测取,并存储;,2.形成数据向量和。,3.采用增广最小二乘递推法获得估计参数。,4.根据式(2.89)求取。,(2.89),增广最小二乘法,.,2.3.4广义最小方差自校正控制,.,2.3.4广义最小方差自校正控制,引入Diophantine方程,(2.95),在式(2.90)两边同乘,有,结合式(2.95),上式变为,则广义输出为,(2.96),.,2.3.4广义最小方差自校正控制,(2.99),(2.100),代入到式(2.91)所示的性能指标中,可得广义最小方差控制律为,即,由式(2.97)(2.99),可得,.,2.3.4广义最小方差自校正控制,定义,控制器参数辨识方程(2.101)可以表示为,(2.103),(2.105),控制器参数辨识方程可以表示为,.,2.3.4广义最小方差自校正控制,广义最小方差自校正控制算法计算步骤:,1.测取,并存储;2.形成数据向量和;3.采用递推最小二乘法获得估计参数;4.根据式(2.106)求取;5.根据式(2.104)计算最优预报的近似值,以便构成,用于下次递推计算。,.,2.3.5零极点配置自校正控制器,2.3.5.1零极点配置控制器,假设与互质.,与互质。,零极点配置控制系统结构图,.,2.3.5零极点配置自校正控制器,2.3.5.1零极点配置控制器,(2.109),(2.111),零极点配置就是使的闭环系统传递函数与理想闭环传输函数相同,即,(2.114),.,2.3.5零极点配置自校正控制器,2.3.5.1零极点配置控制器,(2.114),(2.115),(2.116),显然闭环零极点配置方程分别为,(2.117),由式(2.109)和(2.116),有,如果系统时延为,且为最小相位系统,可选择,(2.118),(2.119),零极点配置方程变为,.,2.3.5零极点配置自校正控制器,2.3.5.1零极点配置控制器,为了消除跟踪误差必须合理选择。,若选择:,由于,那么,.,2.3.5零极点配置自校正控制器,2.3.5.2零极点配置自校正控制器,一、显式零极点配置自校正控制算法,2.分解多项式,3.解下列极点配置方程求取和,5.根据控制器方程求取控制输入,4.选择多项式,使得控制器能够消除跟踪误差。,以系统为非最小相位系统为例:,.,二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湿地公园水生植物种植及生态景观设计施工协议
- 高端工业模具技术改造质量跟踪及服务合同
- 土地储备项目补偿款支付及延期协议
- 影视作品兼职配音员合作协议
- 商务办公租赁收益分配合同
- 电视剧组武术替身人员酬劳结算合同
- 儿童抚养费用与父母收入比例调整合同
- 家庭经济状况联动子女抚养费用调整合同
- 海外房产投资风险评估与风险控制咨询协议
- 苏科版2025年中考数学三轮冲刺专题-数学思维及能力含答案
- 2022年江苏泰州市第四人民医院招考聘用高层次人才11人(必考题)模拟卷及答案
- 新加坡sm214th面经44踏水行歌
- 产科输血-ppt课件
- 国家职业技能标准 (2021年版) 公共营养师
- 森林防火PPT课件
- 多合规政策及流程变化对照版
- 钢箱梁的制作及安装方案
- 工程测量毕业设计毕业论文
- 一元二次方程四种解法知识点与练习题(包括十字相乘法)
- 水平四篮球行进间运球教学设计
- 雨露计划职业教育补助学籍证明四川
评论
0/150
提交评论