3.1.1空间向量及其加减运算ppt课件_第1页
3.1.1空间向量及其加减运算ppt课件_第2页
3.1.1空间向量及其加减运算ppt课件_第3页
3.1.1空间向量及其加减运算ppt课件_第4页
3.1.1空间向量及其加减运算ppt课件_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,空间向量及其加减运算,.,一、平面向量复习,定义:,既有大小又有方向的量叫向量,几何表示法:,用有向线段表示;,字母表示法:,用字母a、b等或者用有向线段的起点与终点字母表示,相等的向量:,长度相等且方向相同的向量,.,平面向量的加减法运算,向量的加法:,a,b,a+b,平行四边形法则,a,a+b,三角形法则(首尾相连),.,向量的减法,a,b,a-b,三角形法则,减向量终点指向被减向量终点,.,平面向量的加法运算律,加法交换律:,abba,加法结合律:,(ab)ca(bc),.,推广,首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量即:,.,首尾相接的若干向量构成一个封闭图形,则它们的和为零向量即:,.,二、空间向量及其加减运算,空间向量,(1)定义:空间中具有大小和方向的量叫做空间向量,空间向量的大小叫做向量的模,.,二、空间向量及其加减运算,空间向量,(2)表示方法:,几何表示:用有向线段表示空间向量有向线段的长度表示空间向量的模;,代数表示:用表示有向线段起点终点的大写字母加箭头表示空间向量;也可用带有箭头的小写字母表示空间向量;,空间向量的模表示成或,与平面向量相同,.,空间向量,(3)特殊的空间向量:,单位向量:大小(模)为1向量;,零向量:大小(模)为零的向量;记作,二、空间向量及其加减运算,零向量的方向是任意的,若是单位向量,则,若,则是单位向量,.,二、空间向量及其加减运算,空间向量,相等向量:大小相等和方向相同的向量;二者缺一不可,(4)空间向量的关系:,共线向量(或平行向量):方向相同或相反的向量,相反向量:大小相等方向相反的向量,空间向量是自由向量;空间任意两个向量都可以用同一平面内的两条有向线段表示,.,2.空间向量的加法、减法,a+b,a-b,.,3.空间向量加法运算律,加法交换律:,a+b=b+a;,加法结合律:,(a+b)+c=a+(b+c);,a,b,c,a+b+c,a,b,c,a+b+c,a+b,b+c,.,空间向量的加法、减法的说明,1.空间向量的运算就是平面向量运算的推广,2.两个向量相加的平行四边形法则在空间仍然成立,3.空间向量的加法运算可以推广至若干个向量相加,.,推广,首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量即:,.,首尾相接的若干向量构成一个封闭图形,则它们的和为零向量即:,.,例1.给出以下命题:(1)空间中任意两个单位向量相等。(2)两个空间向量相等,则它们的起点、终点相同;(3)若空间向量满足,则;(4)在正方体中,必有;(5)若空间向量满足,则;其中不正确命题的个数是()A.1B.2C.3D.4,C,.,变式:如图所示,长方体中,AD=2,AA1=1,AB=3。(1)写出与相等的所有向量;(2)写出与向量的相反向量。,.,平行六面体:平行四边形ABCD平移向量a到A1B1C1D1的轨迹所形成的几何体,叫做平行六面体。,记作ABCDA1B1C1D1,它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。,.,例2已知平行六面体,化简下列向量表达式,并标出化简结果的向量:,.,例2已知平行六面体,化简下列向量表达式,并标出化简结果的向量:,(1),.,例2已知平行六面体,化简下列向量表达式,并标出化简结果的向量:,(2),.,例2已知平行六面体化简下列向量表达式,并标出化简结果的向量:,(2),始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量,.,例2已知平行六面体,化简下列向量表达式,并标出化简结果的向量:,.,例2已知平行六面体,化简下列向量表达式,并标出化简结果的向量:,.,变式:已知平行六面体,下列四式中,正确的是。,.,变式:,.,A.1B.2C.3D.4,例3在正方体中,下列各式中运算的结果为向量的共有()个,.,例4在如图所示的平行六面体中,求证:,.,平面向量,概念,加法减法数乘运算,运算律,表示法,相等向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论