五沟式氧化沟的设计及运行.doc_第1页
五沟式氧化沟的设计及运行.doc_第2页
五沟式氧化沟的设计及运行.doc_第3页
五沟式氧化沟的设计及运行.doc_第4页
五沟式氧化沟的设计及运行.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

五沟式氧化沟的设计及运行窗体顶端南通市污水处理厂工程的一期处理规模为2.5104m3/d,以处理工业废水为主(化纤、印染、制药、皮革、酿造等废水,所占比例在80%以上)。设计进水BOD5为350mg/L,SS为250mg/L,出水需达到污水综合排放标准(GB897896)中的二级标准,处理工艺为创新的五沟式氧化沟,厂区总占地面积为6.75hm2。该工程自1994年6月建成投产以来一直满负荷运行,处理效果良好。 1五沟式氧化沟的设计及特点 1.1五沟式氧化沟在该厂的设计过程中,曾考虑采用三沟式氧化沟工艺。针对该厂设计进水BOD5达350mg/L的情况,通过计算发现三沟式氧化沟的容积偏大,特别是当边沟作沉淀池时其水力停留时间达10h以上,造成了容积的浪费(容积利用率仅为55%),同时其设备利用率也较低,故较高浓度的污水采用三沟式氧化沟工艺进行处理是不经济的。由三沟式氧化沟的工作原理可知,其中间沟一直作为生化反应池,如增加中间沟的容积即可增加容积及设备的利用率,从而降低工程造价。为此,提出了五沟式氧化沟的概念,即以等容积的五条环形沟并联组成五沟式氧化沟,各沟之间以孔洞连通,两边沟交替作为沉淀池、生化池,中间三条沟作为生化池,配水井可交替向五条沟中的任一条沟配水,并通过控制转刷的开、停以及高、低速运行来达到各沟中好氧、缺(厌)氧、沉淀等不同的运行状态。1.2五沟式氧化沟的设计南通市污水厂(一期工程)采用1座五沟式氧化沟,主要设计参数:污泥负荷为0.08kgBOD5/(kgMLSSd),混合液浓度为4g/L。氧化沟总容积为40866m3,每沟容积为8173m3,平面尺寸为102.75m120.5m,有效水深为3.5m,沟宽为10m。配备25台直径为1m、有效长度为9m的双速曝气转刷。1.3运行模式及特点五沟式氧化沟的运行模式类似于三沟式氧化沟,其两边沟交替作为沉淀池和曝气池,中间三沟(交替进水)作为缺氧池、好氧池。沟内配备带双速电机的曝气转刷,其在高速运行时曝气充氧,在低速运行时维持沟内的混合液流动,为反硝化创造一个缺氧环境。该工程采用的工作周期为8h,运行方式分为6个阶段。阶段A(1.5h):污水进入1号沟,由5号沟出水。1号沟转刷低速运行,因处于缺氧状态而进行反硝化;2、3、4号沟转刷高速运行,进行有机物的降解和硝化。阶段B(1.5 h):污水进3号沟,仍由5号沟出水。3号沟转刷低速运行,处于缺氧状态而进行反硝化;1、2、4号沟转刷高速运行。阶段C(1h):污水进入2号沟,由5号沟出水。2号沟转刷低速运行,3、4号沟转刷高速运行;1号沟转刷停开,处于出水过渡状态。阶段D(1.5 h):污水进入5号沟,由1号沟出水。5号沟转刷低速运行,处于缺氧状态;2、3 、4号沟转刷高速运行。阶段E(1.5 h):污水进入3号沟,仍由1号沟出水。3号沟转刷低速运行,2、4、5号沟转刷高速运行。阶段F(1 h):污水进4号沟,仍由1号沟出水。4号沟转刷低速运行,2号、3号沟转刷高速运行;5号沟转刷停止运行,处于出水过渡状态。 上述各阶段的时间设定及运行周期可根据实际情况进行适当调整。氧化沟的进、出水和转刷的开停及其转速的高低都通过PLC控制。为节省电耗按运行的实际需要充氧,在每条沟中都设有DO探头,当某一沟中DO测定值大于其设定值时则该沟中的转刷逐台由高速变为低速运行。由运行方式可见,五沟式氧化沟每条沟每天用于生物处理的时间:1、5号沟为9h,2、3、4号沟为24h。由此可得出五沟式氧化沟的容积利用率为0.75,比三沟式氧化沟的容积利用率(0.55)提高了20%,同样设备利用率也提高了20%。另外,采用五沟式氧化沟与采用三沟式氧化沟相比,其池体体积、曝气转刷数可减少27%,工程投资可减少20%30%,经济效益显著。另外,五沟式氧化沟能够实现全时反硝化,即五沟中总有一沟处于缺氧反硝化运行状态。全时反硝化可达到更高的脱氮效率,减少耗氧量,并节省能耗。而三沟式氧化沟每天只有13.5h处于反硝化运行状态。 2运行效果 该工程自1994年6月投产以来一直满负荷运行。在运行的前几年主要处理工业废水,其进水BOD5、SS、COD高且变化幅度大,年平均进水水质指标值超过设计值。后几年,随着城市污水管网的不断完善则城市生活污水的接入量逐年增加,污水厂进厂水质指标值逐 年下降(见表1),进水水质指标值超过设计值的天数逐年减少,进而年平均进水水质指标值逐渐下降到设计值。 表1每年进水水质指标值超设计标准天数d年份BOD5(350mg/L)SS(250mg/L)COD(1000mg /L)1994160646119951673750199613833191997732610199891342519994650232000205292001233215由表1可知,虽然进水水质指标值高于设计值,且水质变化幅度大(最高日进水BOD5是设计值的4倍),但出水BOD5、SS、COD仍能满足排放要求,充分体现了氧化沟耐冲击负荷、运行稳定的特点。 3 存在问题及分析 进水污染物浓度高、变化幅度大,特别是进水呈酸性(常年进水的pH值为6.5左右,最低pH值为34),严重影响生物处理系统的运行并降低了设备的使用寿命,如进厂管道就曾因腐蚀而塌陷。污染物浓度高、变化幅度大反映了排放废水工厂的内部预处理没有达到要求。有时出水中氨氮浓度仍偏高,氨氮去除率低,不能满足现行的污水综合排放标准(GB89781996)中的二级标准要求。其原因主要有二,一是进水NH3-N浓度高(为100mg/L左右) 而pH值和碱度低(为200mg/L左右)。进水NH3-N与碱度的比值过低导致了NH3-N的硝化难以完成,从而不能完全发挥该工艺全时反硝化的特点;二是该工程全部采用了国产设备,其故障率高,因而影响了工艺的正常运行。针对上述问题,采取的对策是严格控制工业废水的排放和提高设备的质量。首先应重点控制排水呈酸性的和排放含高浓度NH3-N废水的企业,对前者严格要求其进行厂内预处理至中性后方能排入城市排水管网,对后者要求其进行厂内脱氮(可采用吹脱等经济的方法);其次,对曝气转刷等关键设备应优先选用国外产品。一期工程的进水磷含量较低(13mg/L),其大部分被微生物同化利用,出水磷含量可稳定在0.5mg/L以下。但随着城市生活污水接入量的增加则进水BOD5/P的比例有减小的趋势,故仅依靠微生物的同化作用不能满足出水磷的排放要求。五沟式氧化沟同三沟式氧化沟一样,没有一个绝对的厌氧段,因而生物除磷的能力有限。此外,在一期工程的运行过程中也发现,增加曝气量会导致出现大量泡沫,其带动污泥上浮而造成污泥流失。再者,五沟式氧化沟中的污泥浓度也分布不均,其边沟污泥浓度为中间沟的1倍左右。上述问题需通过对五沟式氧化沟进行改进来加以解决。 4结语 五沟式氧化沟耐冲击负荷,出水水质稳定。其容积利用率高达75%,因而可节省大量投资。五沟式氧化沟能实现全时反硝化脱氮,故可获得更高的脱氮效率。但同时它也存在需进一步提高除磷效率、各沟中污泥浓度分布不均等问题,有待进一步完善。窗体底端武汉径河化工厂高浓度废水的预处理试验研究武汉径河化工厂是一个以生产合成橡胶等精细化工原料为主的国有小型化工企业,该厂产生的废水主要源于:生产塑解剂SJ-103车间的洗涤水和生产车间地坪冲洗水;生产增塑剂A车间洗涤水和生产车间地坪冲洗水,总水量为18m3/d。这些废水中BOD5、COD、油脂类等多种污染物超标,给受纳水体造成了严重污染,故对其治理很有必要。受径河厂污水处理工程设计单位武汉钢铁设计院的委托,我们对该污水处理系统进行了中试,以验证处理工艺的可行性和可靠性。中试过程中,探索了预处理采用何种药剂及剂量问题,获得了相关的定性定量分析数据。本文仅就中试过程中预处理部分予以介绍.至于生化处理部分将另文介绍。1 废水性质与处理工艺经现场勘察及水样检测,径河厂废水水质见表1表1 径河化工厂生产废水水质分析分类塑解剂车间废水增塑车间废水BOD5(mg/l)60070020003000COD(mg/l)3000030007000BOD5/CODCr(%)2.34366ss(mg/l)60100100150pH1.32.56.5水温()80该厂废水属混合性污水,表现出:废水性质复杂(经检测水中含六氯苯、NaHs、DMF等化工物质);COD含量远高于一般废水;显酸性,须中和后方能进行生化处理;BOD5值偏高;色度、SS不高。据此性质,要求采用生化处理法为主的组合处理工艺,以达到处理要求。武钢院提出了“物化生化物化”的组合处理工艺。其流程图如下:图1 组合工艺流程图该处理系统采用厌氧好氧生物膜技术,结合物化的组合工艺,使整个系统的处理效率、稳定性、适应性及抗冲击负荷能力高于一般生化处理工艺1。对调节后的原水进行生化处理是本工艺的关键。为能得到相关工艺参数,按武汉钢铁设计院设计的处理工艺,我们制作了试验装置。其流程见图2图2 试验装置流程图试验装置按武钢院设计的处理工艺做了比例缩小,试验参数参照设计参数进行,实验废水为武汉径河厂废水或按比例加自来水稀释作为进水,试验进水水质调节为:表2 试验水质表分类原水稀释后水BOD5(mg/l)15002100500800CODCr(mg/l)8500950025003500SS100200pH5.56.06.06.72 石灰预处理在试验开始阶段,考虑采用A/O工艺处理化工废水,未投加混凝剂.试验过程中,由于进水pH值较低,水质复杂,水样CODCr值偏高,考虑投加混凝剂。投加混凝剂可以使废水中带负电的胶体杂质起压缩扩散层及电中和作用,在胶体杂质微粒之间起粘结架桥作用,以及使其自身形成氢氧化物絮状体,在沉淀中对水中胶体杂质起吸附卷带作用。其中,以粘结架桥作用为主。从而使原水COD值下降,色度、SS值降低,减少后续处理难度。对于此次工业废水还需针对生化处理工艺所需pH值加以调节。对各种混凝药剂进行相关技术、经济分析比较,并考虑用户需求后,决定采用石灰为预处理药剂。选取原因为:石灰货源充足,价格低廉;有成熟使用经验,易配制;石灰呈碱性,可调节原水pH值;石灰有良好凝聚吸附性能,可有效去除原水COD值;生成絮凝体密实、沉淀快,易与水分离34。为精确计量处理效果,采用分析纯Ca(OH)2。2.1 试验装置及材料装置:A/O固定床生物膜处理系统(反应器采用有机玻璃,圆形厌氧反应器规格2001500mm;圆形好氧反应器规格1501700mm,内装YDT立体弹性生物填料)、1000ml量筒,搅拌装置、哈希COD仪、DR/2010分光光度计,YSI55DO仪、奥利龙818pH测试仪等。材料:分析纯Ca(OH)2。2.2 试验过程在原水或按1:2比例与自来水稀释后的水中,投加不同数量的Ca(OH)2,快速搅拌混合11.5min,使废水中的胶体颗粒脱稳聚集;降低转速,慢速搅拌反应35min,然后静沉30min。在反应阶段,由聚集作用所形成的絮体在接触絮凝作用下,与废水中原有微粒结成了白色絮状物质,并开始下沉。取水样检测pH与CODCr。2.2.1 原水直接投加Ca(OH)2试验如前述,两车间进水混合后pH=6,CODCr=85009500,若能直接投加Ca(OH)2混合,不仅可减少后续处理负担,还能减少调节用水量。表3 原水直接投加Ca(OH)2试验原水(L)添加Ca(OH)2(mg/L)pH进水CODCr(mg/L)出水CODCr(mg/L)去除率(%)106.03930014006.869300790015.115006.819300770017.216007.109300740020.4110007.259300700024.7115007.519300650030.1注:水温18.216随着投加量的增大,沉淀物增多,原水色度降低、变清、去除COD率可达30%左右,但经多次试验仍难保证既将废水COD值降至符合生化处理要求,又能使废水PH值也适应生化处理工艺(pH8,对A/O法不利)。因此,直接向原水投加Ca(OH)2是不大可能同时满足上两项要求的。我们改用对原水稀释后,再进行预处理。2.2.2 稀释水投加Ca(OH)2预处理表4 投加Ca(OH)2预处理项目序号水量(L)投加Ca(OH)2(mg/L)pHCOD进(mg/L)COD出(mg/L)去除率(%)1106.3345021206.71345032505.8031406.80345031109.8641506.883450305011.58511006.903450297013.83611506.953450277019.62712007.133450250027.44注:1.水温14.418。2.其它投加量降低COD的数值,大体可按表中数据用插值法求出。表4数据说明,稀释废水,投加适量Ca(OH)2后,PH值升高,COD下降至适于生化处理。投加量越大,水中COD去除率越高。投加量大于200mg/L时,水中沉淀物过多造成后续生化处理试验效果下降。而投加量小于50%,值过小,达不到预处理效果。故投加预处理药剂量确定在110150mg/L之间,依稀释水质而定。为判断预处理效

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论