xxx沁馨宾馆设计 参考文献及文献翻译_第1页
xxx沁馨宾馆设计 参考文献及文献翻译_第2页
xxx沁馨宾馆设计 参考文献及文献翻译_第3页
xxx沁馨宾馆设计 参考文献及文献翻译_第4页
xxx沁馨宾馆设计 参考文献及文献翻译_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1本科毕业设计(论文)外文翻译译文学生姓名院(系)机械工程学院专业班级1指导教师完成日期20年月日2EURJMINERAL2009,21,1771912008年11月发布于网上模型混凝土与膨润土屏障的相互作用摘要在地球化学条件下,对混凝土膨润土界面进行了研究,预期用来作为高放射性废物库。来源于混凝土的碱性条件将会改变矿物的PH值和膨润土阳离子交换性能。被动运输地球化学模型CRUNCHFLOW是用来模拟水泥砂浆接触压实膨润土柱实验,该实验在实验室内进行需要一年,保持在25和120。热力学数据和所涉及的矿物成分和性能已选定,在必要时要进行调整。与以前的工作相比,最重要的改进是一个数据库包含蒙脱土的扩大公式,该数据库适用于FEBEX膨润土组成的实验测定。这使得可以G18209G2524与这G12193矿物相进行G1867G1319的阳离子交换。动力学G17907G10587变化G16280G5471已选定,G5194对G9213G5242进行G16792G1284,来预测G13007G13491在G19283期时G19400G708105年G709内的性能。G13479G7536预测G19555G11540时G19400和G9213G5242的G993G2528分布,膨润土将以G8694G8699化物G451G8844G11719G12879G451G8437G10995G12908土矿物和水泥水化物G19466G8585G8797G9108。在G5326模G17805界条件下,在G19283的时G19400G18339G12255内,使预测的G13479G7536发G10995改变G8821G7389G5468大的G5859G1053。预期膨润土G4643G19568G1025重大的矿物学改变扩大,是为了离G5332混凝土界面G1972G2412G12871,离G5332膨润土G1075G993能改变G4439的G4643G19568G2163能。关键词膨润土碱性G13713G8981G2465G5224交G17902G5326模CRUNCHFLOW蒙脱土混凝土1、绪论G16780G3822G3281G4490G16760为G9157高放射性废物的地G17148G3800G10714,要G1985G1523G3822重G4643G19568G13007G13491,以G11842保废物能G3827G19560离105106年。G1972个G16786G16757包G6336大G18339的混凝土G708作为G6915G6757和G13543G1926G2318G709和一个G12908土G3534G11796工G12255G4643G19568G13007G13491G708ESBG12573,G11013压实膨润土G2058G17908G709该G13007G13491G13870G19610在G12908土G4733G6122G13479G7242G3534地G4733G11719上。G1186废物G13604G1025发射的热G14045G1926G4804值用G1032时G15932面的G17154G15267G1833950100年G17836G2419。G5415前大G3822数G1191库的G16786G16757G19492G2058G13604膨润土界面的预期最高G9213G5242为100G708比G2045G1134G4584,G12573,2006G709。数G11346年G2530热G14045G1926G15940G1955,G5468G1049G1055前,G13604G14116G15444G13792预期放射性G7692G12193被G18334放。G1868型G4622G4556为G13604G11464径为090G12871,和膨润土包装的径向厚G5242为075G12871G708ENRESA,1997年G709。来源于波兰特水泥的混凝土孔隙水G1867G7389高碱性G708超碱性条件下,PH13G709,G5194且能G3827与膨润土G4643G19568发G10995G2465G5224G5194改变膨润土G4643G19568G708奎瓦斯,G12573人,2002年;拉G12871雷斯G12573人,2002;萨维奇G12573人,2002年G709。这些早期的混凝土孔隙水G11013KG7080205MG709,NAG70800502MG709和OHG7080307MG709组成,这些离子将G7389扩散传送,如G7536这G12193材料在G993饱和的条件下布G16786,G17836和能受到膨润土吸力的平G8981作用下传送。两个主要G19466G8585在混凝土改变的过G12255G1025可以辨G16760出来,混凝土改变要归因于浸出孔隙水与外部空隙水的相互作用。一个早期的超碱性和相对短期G19466G8585的特点是溶解的碱金属G8694G8699化物的初始PH值将控G2058在1314的范围内。在这个G19466G8585,膨润土改变的特点是分解。钠和钾G8844G11719G708例如,方G8844G11719G709分解出对混凝土G7389用的钠离子和钾离子G708可用性G2163能,鲍G4584和范德维德,1999年;韦吉G4584代拉G12573,2000年;拉G12871雷斯G12573人,2005年G709。在第二碱性G19283期G19466G8585,该G13007G13491G13543G1926是G11013羟钙G11719G708G8694G8699化钙G709溶解在PH至G9213G5242为25G708瑞德G12573人,2001年;萨维奇G12573人,2002年,高雪G12573人,2004年G709。3钙离子是水泥砂浆浸出液的主要阳离子G12193G12879。在这G12193情况下,假定G8844G11719代替水泥G19466G8585,如硅酸钙水G2524物G708CSHG709,这G12193物G17148在G15444变的膨润土地G2318。其他学者G708伯纳,1992年;泰勒,1997年G709包G6336第三G19466G8585,G5415羟钙G11719上的G13543G1926能力殆尽时,PH值下降到低于125。在这个G19466G8585,CSH的G993一致溶解的凝胶和其他混凝土G19466G8585G11842定的PH的G13543G1926能力来源于混凝土的G17805缘。运输G5326模这一领域的研究已经对膨润土泥G4733G4643G19568碱性G13713的影响进行了未来数G11346年至数千年的预测G708德文特G12573人,2001年;萨维奇G12573人,2002年;德文特G12573人,2004年;特拉伯G12573人,2004年;所来G13792托里霍G12573人,2005年;特拉伯及麻德,2008年G709。然G13792,我们仍缺乏良好特性的实验室,用来测试G451修改和扩大目前的热力学和动力学数据库,用来预测改变的G2465G5224,包G6336砂浆和G12908土G3534G11796G4643G19568的改变。在这项工作G1025,G2045用地球化学代码CRUNCHFLOW斯蒂菲G4584,2006进行了模拟仿真实验,首先,实验室模拟运输单G1815G7696的碱性溶液G708G8694G8699化钠025MG709在被G17855G17902过水泥砂浆G3290G11436和压实膨润土柱。实验G13479G7536G708G5355纳德G12573人,2006G709G16789G7138了在G5326模研究G1025G10995成的G8437G10995矿物的实G17148。其G8437,一G7098对动力学条件进行了G16792G1227,G11013G4733G11719G451混凝土G451膨润土组成的G13007G13491进行G19283期的G5326模实验,相G5415于105年的G9448变。2、实验结果的总结G9195G8981G13466G14002实验,用G8694G8699化钠超碱性溶液025MG708PH值为134G709,G4439模仿了G8825G9400了的水泥早期G19466G8585的孔隙溶液。这G12193溶液被G8892G1849水泥砂浆压实膨润土柱G1025。G18331用高为07G2412G12871,G11464径为55G2412G12871的CEMIG7234G17902波兰特水泥G3290柱。这G12193水泥G6564G1391了一个G8694G8699化钙受控的G13007G13491,如G7536混凝土膨润土G2465G5224G4560致PHG7138G7186下降,G4439将会溶解。膨润土柱单G17736压G13565至14G1823G8611G12447方G2412G12871,G4622G4556为22G2412G12871高和70G2412G12871的G11464径。实验期G19400,G8611月测试一G8437G9334出水的组成成分,测试时G19400G19283G17810一年。一个月和G1857个月的实验G1075进行G11540,来测试G1025G19400G19466G8585的特G5461G17165G4584G2347德斯G12573人,2006年,G16826G13466G16840G7138了这一点。该实验在25到120A1A2A0A3A4A5A6A7A8A9A10A11A12A6A14在高G9213G708120G709下,在地球化学G9448化的条件下,G3534于一出水成分的变化,G13007G13491的三个G19466G8585可以分辨出来。第一G19466G8585G708G20G16G21月G709的特G5461是膨润土G1025的可溶性G11428G12879浸出。在G2465G5224的G3848G1972个G7155期,G9334出水G1025G8707化物测G18339与初始G8999G5242相比大G5145G5242下降。在G11839酸G11428的条件下,G2474G9334出水G1025G7691G2709进行测G18339分G7524,G11013于水泥砂浆G1025G11839酸G11428的分解G4560致测G18339值G17892G9188G1955G4581G708对G11839酸钙G11730G11719和G1231G1321G8543G1325G11719G14179及G11840G11719G14179G709。第二G19466G8585G708G21G16G25个月G709受控于G8437G10995矿物的溶解与G8797G9108,与G83G43值G17892G9188G1186G27G3698G2164到G20G21G7389G1863,这要归因于G38G16G54G16G43凝胶G708钙G3247水G2524物G709与蒙脱G11719的G2465G5224G708奎瓦斯G12573人,G21G19G19G25G709。G3第二G19466G8585的G13479G7536是为蒙脱G11719解散G2031G17908G8981G1319运G12239的G1260先G17896径。G2528时,一些G12908土G13870G19610G1319G19480在水泥化G2524物G15932面,在水泥砂浆与膨润土界面G3800。这些G9046料G3371的孔隙G5242属G1025G12573G16280模,G11013G8504G1147G10995的外部G15932面G12227G5625G2107G1955G4581。在第三G19466G8585G11G25G16G20G21个月G12G15一G7098G12908土G13870G19610G1319被G4506G4565G15碱性溶液能G3827G8981过这些G17896径G15与最初的G12908土相互作用G15这与G83G43值G3698G2164到G20G21G17G24G7389G1863,G13792且G9195G17891G13007数是G5332始时G20G21G19557G102153G1041013MS1时测G18339的两G1505。高G9213下G14731得的主要矿物G17728变是G8844G11719G12879的G5430成G708方G8844G11719的G5430成可以G17902过X射G13459G15905射和G6207G6563G11017G19248G18339化G16278G4531G709,在离界面第一G8639G12871的地方,雪硅钙G11719的低CA/SI比CSHG7242G1319的G8797G9108。CSHG13479G7242的G12255G5242G19555G11540离界面的G17329离G3698G2164G13792G1955G4581。在低G9213G70825G709时,G9195G17891G13007数G19555时G19400下降。这G1075降低了G15444变G5114的厚G5242。在25时,CSH凝胶的G13479G7242和水G19221G11719在水泥砂浆和G12908土接触的地方G3593G1315孔隙以G19462G8502溶液进G1849膨润土G1025。G2045用X射G13459G15905射G8821G7389发G10628G7044的矿物的矿物学G18339化,G1306G2528一G12879型的G19466G8585,在120时G2045用G6207G6563G11017子G7186G5506G19248可以G16278G4531到。CSH凝胶G993G13479G7242,G13792且G4649G12046了G1186G13432维4到含G1028G4512钙G9046料的G993G2528G5430G5589。CSH凝胶的G5430G5589是在实验G1025G18331用的G9213G5242G2001数。这些实验的G16826G13466G6563G17860可以在G17165G4584G2347德斯G12573人的G6563G17860G1025找到。膨润土G1025G16278G4531到的矿物G17728化,G4439的G9213G5242G451PH值,改变厚G5242,如G15932一所G12046。3、建模工具及其基本假设地球化学G2465G5224运输代码CRUNCHFLOWG708斯蒂G17165G4584,2006年G709,该GIMRT/OS3D代码G708斯蒂G17165G4584和薮崎,1996年;斯蒂G17165G4584,2001年G709被用来更G7044版本,在25和120进行模拟实验。该代码包含了矿物溶解/G13479G7242的动力学G3800G10714。运输被G16760为只在一定范围内,因为压力条件和G13007G13491G16786G16757保持G1260先选择柱的方向G8981动。平G8981G451扩散和分散传输机G2058时都考虑到了。包G6336阳离子交换性能,和实验G16278G4531到的G8437G10995矿物在允G16780范围内进行矿物G17728变。柱G1025运输的概念G16786G16757如图一所G12046。必须做出一些假G16786,归因于代码的G19492G2058和运输和化学参数的G993G11842定性,例如扩散G13007数,孔隙G5242G451高G9213下矿物稳定性G708CSHG19466G8585G709和G2465G5224G1025动力学的矿物G8797G9108/溶解G10587G708萨维奇G12573人参与,2007年G709。G8504外,实验测试G15932G7138,该G13007G13491G17902过G3698G2164G8981G17907作为溶解和G8797G9108G2465G5224在120G8981G18339G19610G1025的G13479G7536,近似假定为一个恒定的平均G8981G17907。G2465馈G1025G993包G6336孔隙G10587对G17891射G10587的预测变化G708见讨论G709。G11013于这些G2419因,G17902过G5326模工G1867所得的G13479G7536,必须在这一背景下,考虑G1972个案例,运用G993G2528的G2465G5224模型。这将G7389助于G16792G1284模型的可靠性,G17902过与实验G13479G7536相比较。4、热力学与动力学的数据库FEBEX蒙脱土,G1075被称为“LASERRATA”膨润土G708卡巴雷若罗卓荆,2005年出版G709被插G1849到数据库作为一G12193矿物G19466G8585。5蒙脱土的主要成分是FEBEX膨润土,包含两级储层非均G17148性。首先,一点点的钾是G13479构性的固定这层G19480属部件G708如高层G11017荷G709G708夸德罗斯和G2045纳雷斯,1995年G709。实际上化学G2465G5224G5194G993G7186著,因为K与复杂的交换G993相G1863。其G8437,G993G2528的阳离子交换主要是钙G451G19221G451钠在G2524适的比例G17902过交换G2465G5224将改变他们的在地球化学环境下的分布,因G8504G1075是碱性G13713局部控G2058G19400隙水组成。蒙脱土在热力学数据库G1025G5326G12447的化学组成G708钙G451铯G451钾G451G19221G6122是钠G709是相对简单的,G5194G993是与G1231G1321真正的成分都相匹G18209。卡玛G12573人2000实验得到了离子活动的G1147G2709IAP和蒙皂G11719在80的溶G15444G17907G10587方G12255和PH值为88的FEBEX改性G1147G2709。IAP的平均值为501053,G13792且蒙脱G11719的解散方G12255已给出考虑到平衡,能G3827LOGKTEMPERATUREG2001数上的一点的值G708LOGK1523时,G9213G5242为80。水的G3534G11796物G17148AL3,H,和SIO2A13A15G993得G993被替换,G13792且蒙脱土的G13479构G3534G11796G17728变为G709G709O10OH2,这G7691与数据库保持一致。G8821G7389铁物G12193都考虑在水相,因G8504所G7389包含在蒙脱土G1025的FE3G17728化为AL3,以维持水相的平衡,这G7691使ALOH4的化学G16757G18339G13007数变为1605。G2045用数据库和范特霍夫方G12255就可以得到铝离子和G8694G8699根离子,和LOGK在80时的G17728换G2465G5224FEBEX膨润土分解所得的G7044的LOGK为最G2530,这个化学公式稍G7389改变,G11013拉G12871雷斯G12573人所G11842定的G7082002年G709,G13792且该公式被桑切斯G12573人使用在膨润土的一个05G8639G12871的小G3371上,这与实验研究的成分组成相符G2524。在0300的范围内,即RUNCHFLOW模型的G16280定,LOGKTEMPERATUREG2001数是在G12879比蒙脱土钙的G2001数归纳总G13479得来的。25时,LOGK626,根据分解方G1225565、结论该研究G15932G7138,膨润土G4643G19568在碱性条件下的稳定性和化学性能的G13543G1926能力,将会在G9157的G17154G15267G3800发G10995。蒙脱土的分解G10587预G16757在G19283时G19400内G708105年G709会降低,G5415G993考虑对G8981运输时,初始膨润土在接口G19480近的一小部分正在分解。G8437G10995矿物方G8844G11719G451水G19221G11719G451G19221皂G11719和CSHG19466G8585,这是一个紧G4506的G19466G8585,是在实验室里G16278G4531模仿膨润土变更G2318域的G8797G9108。G8844G11719G12879,CSHG19466G8585,G1867G7389G993G2528的钙/硅的比值,G13792且G19221和硅酸G11428在试验G1025被检测到,G13792且他们已被预测在对G8981的条件下在360天的运作过G12255G1025G8797G9108在模型G1025,在G19283时G19400内G708105年G709仅考虑扩散过G12255。这个G13007G13491的复杂性已经被CRUNCHFLOW数值模型捕捉。动力学的矿物溶解/G8797G9108G5224进一步约束,大G18339的矿物G17148,包G6336其依赖于超级碱性条件。G5224用地球化学模式的实施G12573主题所需要的G3534本性G17148和化学的耦G2524G1863G13007,G17836G7389特定G12908土的过G12255,例如,阴离子的排除。G1306是,G7389一个G3534本知识的缺乏,即孔隙G4622G5242的操作G8981G12255,和这些G13466节怎G7691去完善。G19283期模型的预测必须在G3534本假G16786的G3534G11796上进行G16792G1284。这G7691做的目的G993是对混凝土膨润土界面G2465G5224性预测的G7389信心,G13792是为了约束与G17154G15267室位置G7389G1863的G2465G5224过G12255,G5194指出一些模型的局G19492性G708地球化学代码和热力学/动力学数据库的性能G709。良好运作的G16826G13466定G18339模型试验,将会发G4649地球化学编码和G6564高改善热力学和动力学数据库。EURJMINERAL2009,21,177191PUBLISHEDONLINENOVEMBER2008MODELLINGCONCRETEINTERACTIONWITHABENTONITEBARRIERRAULFERNANDEZ1,JAIMECUEVAS2ANDURSKMADER11INSTITUTFURGEOLOGIE,UNIVERSITATBERN,BALTZERSTRASSE13,CH3012BERN,SWITZERLAND7CORRESPONDINGAUTHOR,EMAILRAULFERNANDEZGEOUNIBECH2DEPARTAMENTOQUIMICAAGRICOLA,GEOLOGIAYGEOQUIMICA,FACULTADDECIENCIAS,UNIVERSIDADAUTONOMADEMADRID,CAMPUSCANTOBLANCO,28049MADRID,SPAINABSTRACTTHECONCRETEBENTONITEINTERFACEHASBEENSTUDIEDUNDERTHEGEOCHEMICALCONDITIONSEXPECTEDINAREPOSITORYFORHIGHLEVELRADIOACTIVEWASTETHEALKALINECONDITIONSEMANATINGFROMCONCRETEWILLMODIFYTHEMINERALOGY,PHANDCATIONEXCHANGEPROPERTIESOFBENTONITETHEREACTIVETRANSPORTGEOCHEMICALMODELCRUNCHFLOWWASUSEDTOSIMULATECOLUMNEXPERIMENTSWITHCEMENTMORTARINCONTACTWITHCOMPACTEDBENTONITECARRIEDOUTATLABORATORYSCALEFORAPERIODOFONEYEARAT25CAND120CTHETHERMODYNAMICDATAANDCOMPOSITIONALPROPERTIESOFTHEMINERALSINVOLVEDHAVEBEENSELECTEDANDADAPTEDWHERENECESSARYANIMPORTANTIMPROVEMENT,COMPAREDWITHPREVIOUSWORK,ISTHEINCLUSIONOFANEXTENDEDFORMULAFORMONTMORILLONITEINTHEDATABASETHATFITSTHEEXPERIMENTALLYDETERMINEDCOMPOSITIONOFFEBEXBENTONITE,ANDTHISALLOWEDTOTIETHEEXCHANGEABLECATIONSSPECIFICALLYTOTHISMINERALPHASEKINETICRATELAWSHAVEBEENSELECTEDANDEVALUATEDATBOTHTEMPERATURESTOPREDICTTHESYSTEMBEHAVIOURATLONGTIMESCALES105YEARSRESULTSPREDICTTHEPRECIPITATIONOFHYDROXIDES,ZEOLITES,SECONDARYCLAYMINERALSANDCEMENTHYDRATIONPHASESINBENTONITEWITHDIFFERENTDISTRIBUTIONSASAFUNCTIONOFTIMEANDTEMPERATURETHEPREDICTEDALTERATIONPRODUCEDATLONGTIMESCALESISNOTVERYSIGNIFICANTUNDERTHEBOUNDARYCONDITIONSOFTHEMODELLINGTHEEXPECTEDEXTENSIONOFSIGNIFICANTMINERALOGICALCHANGESINTHEBENTONITEBARRIERISINTHEORDEROFAFEWCENTIMETRESFROMTHECONCRETEINTERFACE,LEAVINGTHEBULKOFTHEBENTONITEUNCHANGEDINITSBARRIERFUNCTIONKEYWORDBENTONITE,ALKALINEPLUME,REACTIVETANSPORTEMODELLING,CRUNCHFLOW,MONTMORILLONITE,CONCRETE1INTRODUCTIONMANYCOUNTRIESCONSIDERDEEPGEOLOGICALDISPOSALFORHIGHLEVELRADIOACTIVEWASTE,WHEREBYAMULTIPLEBARRIERSYSTEMHASTOENSUREWASTEISOLATIONFOR105106YEARSSEVERALDESIGNSINCLUDESUBSTANTIALAMOUNTSOFCONCRETEFORSUPPORTANDASABUFFERANDAENGINEEREDBARRIERSYSTEMEBS,EG,MADEFROMCOMPACTEDBENTONITEHOSTEDINEITHERCLAYSTONEORCRYSTALLINEBASEMENTROCKHYPERALKALINEPOREWATERSEMANATINGFROMTHEOUTERCONCRETESHELLWILLINTERACTBOTHINWARDWITHTHEBENTONITEBARRIERSURROUNDINGTHEMETALCANISTERS,BUTALSOOUTWARDWITHTHEHOSTROCKENVIRONMENTTHEPEAKOFTHETHERMALPULSEEMITTEDFROMTHEWASTECANISTERISREDUCEDBYINTERIMSURFACESTORAGE50100YEARSMOSTCURRENTREPOSITORYDESIGNSLIMITTHEEXPECTEDMAXIMUMTEMPERATUREATTHECANISTERBENTONITEINTERFACETO100CVILLARETAL,2006THETHERMALPULSEDECAYSAFTERAFEW100YEARS,LONGBEFORERADIONUCLIDESAREEXPECTEDTOBERELEASEDASARESULTOFCANISTERCORROSIONTYPICALDIMENSIONSARE090MFORCANISTERDIAMETER,AND075MFORTHERADIALTHICKNESSOFTHEBENTONITEOVERPACKENRESA,1997CONCRETEPOREWATERSORIGINATINGFROMAPORTLANDCEMENTHAVEHIGHALKALINITYHYPER8ALKALINECONDITIONS,PH13,ANDAREABLETOREACTWITHANDMODIFYTHEBENTONITEBARRIERCUEVASETAL,2002RAMIREZETAL,2002SAVAGEETAL,2002THESEEARLYCEMENTPOREWATERSCONSISTOFK0205M,NA00502MANDOH0307M,THATWILLBETRANSPORTEDBYDIFFUSIONANDPOSSIBLYBYADVECTIONDUETOBENTONITESUCTIONIFTHISMATERIALISEMPLACEDUNDERUNSATURATEDCONDITIONSTWOMAINSTAGESHAVEBEENDISTINGUISHEDDURINGCONCRETEALTERATIONDUETOLEACHINGANDINTERACTIONWITHEXTERNALPOREWATERAFIRSTHYPERALKALINEEARLYANDRELATIVELYSHORTTERMSTAGEISCHARACTERIZEDBYTHELEACHINGOFDISSOLVEDALKALIHYDROXIDESTHATWILLCONTROLTHEINITIALPHSINTHERANGEOF1314DURINGTHISSTAGE,THEALTERATIONOFBENTONITEISCHARACTERIZEDBYMONTMORILLONITEDISSOLUTIONSODIUMANDPOTASSIUMZEOLITESEG,ANALCIME,PHILLIPSITEAREFORMED,ASAFUNCTIONOFTHENAORKAVAILABILITYFROMTHECONCRETEBAUERVIGILDELAVILLAETAL,2001RAMIREZETAL,2005INASECONDALKALINELONGTERMSTAGE,THESYSTEMISBUFFEREDBYTHEPORTLANDITECAOH2DISSOLUTIONATPH125MEASUREDAT25READETAL,2001SAVAGEETAL,2002GAUCHERETAL,2004CA2A16STHEPREDOMINANTCATIONICSPECIESINTHELEACHINGSOLUTIONOFTHECEMENTMORTARINTHISCASE,ZEOLITESAREREPLACEDPRESUMABLYBYCEMENTPHASESSUCHASCALCIUMSILICATEHYDRATESCSHINTHEALTEREDBENTONITEREGIONOTHERAUTHORSBERNER,1992TAYLOR,1997INCLUDEATHIRDSTAGEWHENTHEBUFFERCAPACITYOFPORTLANDITEISEXHAUSTED,ANDPHDECREASESTOVALUESBELOW125DURINGTHISSTAGETHEINCONGRUENTDISSOLUTIONOFCSHGELSANDOTHERCEMENTPHASESDETERMINETHEPHBUFFERINGCAPACITYFROMTHECONCRETESIDEREACTIVETRANSPORTMODELLINGSTUDIESINTHISSPECIFICFIELDHAVEBEENCARRIEDOUTPREDICTINGTHEALKALINEPLUMEEFFECTSONTHEBENTONITEANDCLAYSTONEBARRIERSFORTHENEXTHUNDREDSTOTHOUSANDSOFYEARSDEWINDTETAL,2001SAVAGEETAL,2002DEWINDTETAL,2004GAUCHERETAL,2004MADERSOLERTRABERSTEEFEL,2001WASUSEDTOSIMULATETHEEXPERIMENTSCARRIEDOUTAT25AND120THECODEINCORPORATESAKINETIC10TREATMENTFORMINERALDISSOLUTION/PRECIPITATIONTRANSPORTWASCONSIDEREDINONEDIMENSIONONLYBECAUSEPRESSURECONDITIONSANDSYSTEMDESIGNMAINTAINTHEFLOWINTHEPREFERENTIALDIRECTIONACROSSTHECOLUMNADVECTIVE,DIFFUSIVEANDDISPERSIVETRANSPORTMECHANISMSWERETAKENINTOACCOUNTCATIONEXCHANGEPROPERTIESWEREINCLUDEDANDMINERALOGICALTRANSFORMATIONSWERECONSTRAINEDTOPERMITTHEFORMATIONOFTHESECONDARYMINERALSOBSERVEDEXPERIMENTALLYTHECONCEPTUALDESIGNOFTHEREACTIVETRANSPORTINTHECOLUMNISSHOWNINFIG1SOMEASSUMPTIONSHADTOBEMADEDUETOTHECODELIMITATIONSANDUNCERTAINTIESREGARDINGTRANSPORTANDCHEMICALPARAMETERSSUCHASDIFFUSIONCOEFFICIENTS,ACCESSIBLEPOROSITY,MINERALSTABILITIESATHIGHTEMPERATURESIECSHPHASESANDKINETICPRECIPITATION/DISSOLUTIONRATESFORMOSTOFTHEMINERALSINVOLVEDINTHEREACTIVITYSAVAGEETAL,2007FURTHERMORE,THEEXPERIMENTALTESTSSUGGESTTHATTHEFLOWVELOCITYTHROUGHTHESYSTEMINCREASEDTHROUGHFOCUSSINGOFFLOWASARESULTOFTHEDISSOLUTIONANDPRECIPITATIONREACTIONSAT120,BUTANAVERAGEDCONSTANTFLOWRATEWASASSUMEDASANAPPROXIMATIONNOFEEDBACKOFPREDICTEDCHANGINGPOROSITYONTRANSMISSIVITYWASINCLUDEDSEEDISCUSSIONFORTHESEREASONS,RESULTSOBTAINEDBYMEANSOFMODELLINGTOOLSMUSTBEINTERPRETEDWITHINTHISCONTEXT,CONSIDERINGSEVERALCASESANDUSINGDIFFERENTREACTIVITIESFOREACHMODELTHISWILLHELPTOASSESSTHEDEGREEOFRELIABILITYOFTHEMODELSBYCOMPARISONWITHTHEEXPERIMENTALRESULTS4THERMODYNAMICANDKINETICDATABASEFEBEXMONTMORILLONITE,ALSOKNOWNASBENTONITEFROMLASERRATACABALLEROETAL,2005WASINSERTEDINTOTHEDATABASEDATACOMDBSASAMINERALPHASETHISDATABASEISAN11EXTENDEDADAPTATIONFROMTHELAWRENCELIVERMORELLNLDATWOLERY,1992WHICHINCORPORATES,BESIDESTHETHERMODYNAMICPROPERTIES,ALSOAKINETICDATABLOCKMONTMORILLONITEISTHEMAINCOMPONENTOFFEBEXBENTONITEANDCONTAINSHETEROGENEITYATTWOLEVELSFIRSTLY,ALITTLEBITOFPOTASSIUMISSTRUCTURALLYFIXEDINDICATINGTHEPRESENCEOFANILLITICACCESSORYCOMPONENTHIGHLAYERCHARGECUADROSLINARES,1995THISFACTISCHEMICALLYNOTSIGNIFICANTSINCEKISNOTRELEVANTINTHEEXCHANGEABLECOMPLEXSECONDLY,THEDIFFERENTEXCHANGEABLECATIONSMAINLYCALCIUM,MAGNESIUMANDSODIUMINCOMPARABLEPROPORTIONSWILLCHANGETHEIRDISTRIBUTIONSBYMEANSOFEXCHANGEREACTIONSWITHINTHEPERTURBEDGEOCHEMICALENVIRONMENTINDUCEDBYTHEALKALINEPLUME,ANDTHUSALSOLOCALLYCONTROLTHEPOREWATERCOMPOSITIONTHECHEMICALCOMPOSITIONOFMONTMORILLONITEESTABLISHEDINTHERMODYNAMICDATABASESMONTMORCA,CS,K,MGORNAISRELATIVELYSIMPLEANDISNOTAPROPERMATCHFORANYREALCOMPOSITIONCAMAETAL2000EXPERIMENTALLYOBTAINEDTHEIONACTIVITYPRODUCTIAPANDTHESMECTITESDISSOLUTIONRATEEQUATIONAT80ANDATAPHOF88FORFEBEXMONTMORILLONITETHEAVERAGEDVALUEOBTAINEDFORTHEIAPWAS50G10410A17A18A19ANDTHEDISSOLUTIONEQUATIONFORTHESMECTITEWASGIVENASCONSIDERINGEQUILIBRIUM,ASINGLEPOINTONTHELOGKTEMPERATUREFUNCTIONLOGK1523AT80ISOBTAINEDTHEAQUEOUSBASISSPECIESALA19A20,G43A20ANDSIO2AQHADTOBESUBSTITUTED,ANDALSOTHESTRUCTURALBASISOFMONTMORILLONITEWASCHANGEDTOO10OH2TOBECONSISTENTWITHINTHEDATABASENOFESPECIESWERETAKENINTOACCOUNTINTHEAQUEOUSPHASE,SOALLFEA19A20CONTAINEDINMONTMORILLONITEWASTRANSFORMEDTOALA19A20MAINTAININGCHARGEBALANCE,WHICHCHANGEDTHESTOICHIOMETRICCOEFFICIENTTO1605FORALOHG12A21MAKINGUSEOFTHEPHREEQCDATDATABASEANDTHEVANTHOFFEQUATIONITISPOSSIBLETOGETTHECONVERTEDREACTIONSINTERMSOFALA19A20ANDOG43A22,ANDTHEIRLOGKAT80THENEWLOGKFORTHEDISSOLUTIONOFTHEFEBEXMONTMORISOBTAINEDASFINALLY,THECHEMICALFORMULAWASSLIGHTLYCHANGEDTOTHEONEDETERMINEDBYRAMIREZETAL2002ANDUSEDBYSANCHEZETAL2006FORABENTONITEFRACTION,05MM,WHICHMATCHES12THECOMPOSITIONDETERMINEDINTHEEXPERIMENTALCASEOFTHISSTUDYTHELOGKTEMPERATUREFUNCTION,INTHERANGE0300,ASREQUIREDINCRUNCHFLOW,WASOBTAINEDBYEXTRAPOLATIONI

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论