南京航空航天大学Matrix-Theory双语矩阵论期末考试2015.doc_第1页
南京航空航天大学Matrix-Theory双语矩阵论期末考试2015.doc_第2页
南京航空航天大学Matrix-Theory双语矩阵论期末考试2015.doc_第3页
南京航空航天大学Matrix-Theory双语矩阵论期末考试2015.doc_第4页
南京航空航天大学Matrix-Theory双语矩阵论期末考试2015.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档 Part I (必做题,共5题,70分) 第1题(15分)得分 Let denote the set of all real polynomials of degree less than 3 with domain(定义域) . The addition and scalar multiplication are defined in the usual way. Define an inner product on by .(1) Construct an orthonormal basis for from the basis by using the Gram-Schmidt orthogonalization process. (2) Let. Find the projection of onto the subspace spanned by.Solution: (1) , , , , , - (2) -第2题(15分)得分 Let be the linear transformation on (the vector space of real polynomials of degree less than 3) defined by . (1) Find the matrix representing with respect to the ordered basis for . (2) Find a basis for such that with respect to this basis, the matrix B representing is diagonal. (3) Find the kernel(核) and range (值域)of this transformation.Solution: (1) - (2) (The column vectors of T are the eigenvectors of A) The corresponding eigenvectors in are (T diagonalizes A) . With respect to this new basis , the representing matrix of is diagonal. - (3) The kernel is the subspace consisting of all constant polynomials. The range is the subspace spanned by the vectors -第3题(20分)得分Let . (1) Find all determinant divisors and elementary divisors of. (2) Find a Jordan canonical form of . (3) Compute . (Give the details of your computations.) Solution: (1),(特征多项式 . Eigenvalues are 1, 2, 2.)Determinant divisor of order , , Elementary divisors are . - (2) The Jordan canonical form is - (3) For eigenvalue 1, , An eigenvector is For eigenvalue 2, , An eigenvector is Solve , we obtain that , - 第4题(10分)得分Suppose that and . (1) What are the possible minimal polynomials of? Explain.(2) In each case of part (1), what are the possible characteristic polynomials of? Explain.Solution: (1) An annihilating polynomial of A is . The minimal polynomial of A divides any annihilating polynomial of A. The possible minimal polynomials are, , and . -(2) The minimal polynomial of A divides the characteristic polynomial of A. Since A is a matrix of order 3, the characteristic polynomial of A is of degree 3. The minimal polynomial of A and the characteristic polynomial of A have the same linear factors. Case , the characteristic polynomial is Case , the characteristic polynomial is Case , the characteristic polynomial is or -第5题(10分)得分Let . Find the Moore-Penrose inverse of . Solution: , 也可以用SVD求. -Part II (选做题, 每题10分) 请在以下题目中(第6至第9题)选择三题解答. 如果你做了四题,请在题号上画圈标明需要批改的三题. 否则,阅卷者会随意挑选三题批改,这可能影响你的成绩. 第6题 Let be the vector space consisting of all real polynomials of degree less than 4 with usual addition and scalar multiplication. Let be three distinct real numbers. For each pair of polynomials and in, define . Determine whether defines an inner product on or not. Explain. 第7题 Let. Show that if is the orthogonal projection from to, then A is symmetric and the eigenvalues of A are all 1s and 0s. 第8题 Let. Show thatis real-valued for allif and only if A is Hermitian. 第9题 Let be Hermitian matrices, and A be positive definite. Show that AB is similar to BA , and is similar to a real diagonal matrix. 选做题得分若正面不够书写,请写在反面. 第6题解答 Let . Then . But . This does not define an inner product. 第7题解答For any x, , . Hence, . Thus. . From above, we have . This will imply that is an annihilating polynomial of A. The eigenvalue of A must be the roots of . Thus, the eigenvalues of A are 1s and 0s. 第8题解答 See Thm 7.1.1, page 182. 也可以用其它方法. 第9题解答 Since A is nonsingular, . Hence, A is similar to BA Since A is positive definite, there is a nonsingular h

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论