《建筑力学》-李前程--第九章-梁的应力解析PPT课件_第1页
《建筑力学》-李前程--第九章-梁的应力解析PPT课件_第2页
《建筑力学》-李前程--第九章-梁的应力解析PPT课件_第3页
《建筑力学》-李前程--第九章-梁的应力解析PPT课件_第4页
《建筑力学》-李前程--第九章-梁的应力解析PPT课件_第5页
已阅读5页,还剩82页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-,1,建筑力学,主讲单位:力学教研室,(九),-,2,第九章梁的应力,第一节平面弯曲的概念及实例,第二节梁的正应力,第四节梁的切应力,第三节常用截面的惯性矩、平行移轴公式,第五节梁的强度条件,第六节提高梁弯曲强度的主要途径,-,3,第一节平面弯曲的概念及实例,一、弯曲的概念,梁:以弯曲变形为主的杆件。,1.弯曲变形,变形特征:杆件轴线由直线变形后成为曲线。,2.平面弯曲,受弯杆件的轴线为平面曲线时的弯曲称为平面弯曲。,外力是作用线垂直于杆轴线的平衡力系。,-,4,第一节平面弯曲的概念及实例,2.平面弯曲,梁的横截面通常采用对称形状,如矩形、工字形、T字形、圆形等。,纵向对称面:包含梁横截面的一个对称轴及其梁轴线的平面称为纵向对称面。,对称弯曲:作用于梁上的所有外力都在纵向对称面内,弯曲变形后的轴线是一条在该纵向对称面内的平面曲线,这种弯曲称为对称弯曲。,-,5,第一节平面弯曲的概念及实例,2.平面弯曲,横截面的对称轴,梁的轴线,纵向对称面,变形后的轴线与外力在同一平面内,-,6,第一节平面弯曲的概念及实例,二、弯曲的实例,伽利略(Galileo),1638年关于力学和局部运动的两门新科学的对话,历史回顾,-,7,第一节平面弯曲的概念及实例,二、弯曲的实例,楼板梁,纵梁,-,8,第一节平面弯曲的概念及实例,二、弯曲的实例,火车轮轴,-,9,第一节平面弯曲的概念及实例,桥式吊车梁,二、弯曲的实例,-,10,第一节平面弯曲的概念及实例,三、弯曲的应力,一般情况下,梁的横截面上既又弯矩M,又有剪力FS。,只有与正应力有关的法向内力元素dFN=dA才能合成弯矩,只有与切应力有关的切向内力元素dFS=dA才能合成剪力,所以,在梁的横截面上一般既有正应力,又有切应力。,-,11,第二节梁的正应力,纯弯曲,若梁在某段内各横截面上的弯矩为常量,剪力为零,则该段梁的弯曲就称为纯弯曲。,非纯弯曲各截面不仅有弯矩,还有剪力的作用,产生弯曲变形的同时,伴随有剪切变形。这种变形形式称为非纯弯曲。,梁的CD段纯弯曲。,梁的AC、DB段非纯弯曲。,-,12,第二节梁的正应力,梁的CD段纯弯曲。,-,13,第二节梁的正应力,1、研究内容,2、分析思路:(变形固体的力学分析方法),-,14,第二节梁的正应力,一、实验现象的观察与分析,梁由直变弯,以某层(中性层)为界,一侧伸长,一侧缩短;,横截面仍为平面,只是相对旋转了一个角度;,在弯曲过程中梁的横截面始终与梁的轴线保持正交。,若假设各纵向纤维间无相互挤压,则各纵向纤维只产生单向拉伸或压缩。,-,15,第二节梁的正应力,中性层:梁内一层纤维既不伸长也不缩短,因而纤维不受拉应力和压应力,此层纤维称中性层。中性轴:中性层与横截面的交线。,两个概念,-,16,第二节梁的正应力,二、正应力公式推导,推导公式时,要综合考虑几何,物理和静力学三方面。,取一纯弯曲梁段来研究。,-,17,第二节梁的正应力,二、正应力公式推导,变形后:,变形前:,1.几何方面,上式表达了梁横截面上任一点处的纵向线应变随该点的位置而变化的规律。,-,18,第二节梁的正应力,二、正应力公式推导,2.物理方面,式中:,几何方程,由假设的纵向纤维受单向拉伸或压缩,所以,当正应力不超过材料的比例极限时,由胡克定律可得:,=常量,结论:(1)正应力与距离y成正比,即正应力沿截面高度按直线规律变化;,(2)中性轴上各点处的正应力等于零,距中性轴最远的上、下边缘处的正应力最大。,-,19,第二节梁的正应力,二、正应力公式推导,2.物理方面,式中:,是未知的常量,需要解决的问题:,如何确定中性轴的位置?,如何计算1/?,-,20,第二节梁的正应力,3.静力学方面,物理方程,说明中性轴必通过截面的形心。,-,21,第二节梁的正应力,3.静力学方面,梁横截面上正应力计算公式,截面对z轴的惯性矩,-,22,第二节梁的正应力,梁横截面上正应力计算公式,-,23,第二节梁的正应力,梁横截面上正应力计算公式,说明:,(1)式中M和y均以绝对值代入;,(2)正应力是拉应力还是压应力可由观察梁的变形来判断;,符号规定:以中性轴为界:,靠凸边一侧受拉,靠凹边一侧受压。,正应力拉为正;压应力为负。,(3)公式适用于所有横截面形状对称于y轴的梁,如工字形、T字形、圆形截面梁等;,(4)公式适用于非纯弯曲的情况。,-,24,第二节梁的正应力,y,y,中性轴,中性轴,思考:,截面上拉应力与压应力发生在何处?,-,25,第二节梁的正应力,思考:,(1)中性轴为截面对称轴时最大最小正应力的关系?,梁横截面上最大、最小正应力绝对值相等!,y,中性轴,-,26,第二节梁的正应力,思考:,(2)中性轴为不对称轴时最大最小正应力的关系?,梁横截面上最大正应力应分别计算:,-,27,第三节常用截面梁的惯性矩、平行移轴公式,一、简单截面的惯性矩计算,1.矩形截面对y,z轴的惯性矩,b,h,z,y,C,已知:矩形截面bh,C点为形心求:Iy,Iz,解:取平行于z轴和y轴的微元面积,同理,得:,-,28,第三节常用截面梁的惯性矩、平行移轴公式,一、简单截面的惯性矩计算,2.圆形截面对y,z轴的惯性矩,已知:圆截面直径d求:Iy,Iz,IP,解:取圆环微元面积,-,29,第三节常用截面梁的惯性矩、平行移轴公式,二、组合截面的惯性矩计算,1.组合截面由几个简单图形组成的截面称为组合截面。,截面各组成部分对某一轴的惯性矩之代数和,就等于该截面对于同一轴的惯性矩。,1,2,3,-,30,第三节常用截面梁的惯性矩、平行移轴公式,二、组合截面的惯性矩计算,2.平行移轴公式,截面对任一轴的惯性矩,等于它对平行该轴的形心轴的惯性矩,加上截面面积与两轴间距离平方的乘积。,-,31,第三节常用截面梁的惯性矩、平行移轴公式,三、矩形截面的静矩,思考:矩形截面对过形心的中性轴的静矩:,梁横截面上距中性轴为y的横线以外部分的面积A*对中性轴的静矩,A*,z,y,O,图形对于y轴的静矩,图形对于z轴的静矩,C,C点是图形的形心,坐标为:xC,yC,-,32,第三节常用截面梁的惯性矩、平行移轴公式,四、组合截面的形心坐标,静矩与形心坐标之间的关系,已知静矩可以确定图形的形心坐标,已知图形的形心坐标可以确定静矩,z,O,C,C点是图形的形心,坐标为:xC,yC,(2)截面对形心轴的静矩等于零。,讨论:(1)若截面对某一轴的静矩等于零,则该轴必过形心。,-,33,第三节常用截面梁的惯性矩、平行移轴公式,四、组合截面的形心坐标,截面各组成部分对于某一轴的静矩之代数和,就等于该截面对于同一轴的静矩。,对于组合截面,所以,组合截面的形心坐标计算公式为:,-,34,第三节常用截面梁的惯性矩、平行移轴公式,补充例题:计算图示截面的形心C位置。,取x轴和y轴分别与截面的底边和左边缘重合。,将截面分为1,2两个矩形。,解:,O,10,10,120,80,矩形1,矩形2,-,35,第三节常用截面梁的惯性矩、平行移轴公式,例91由两个20a号工字钢和两块钢板组成的截面如图所示。求组合截面对它的形心轴z的惯性矩。,解:由型钢表查得每个20a号工字钢对z轴惯性矩为:,每块钢板分别对自己形心轴的惯性矩为:,利用平行移轴公式求每块钢板对z轴的惯性矩:,组合截面对z轴的惯性矩:,-,36,第三节常用截面梁的惯性矩、平行移轴公式,教材9-4(a):求下列图形对z轴的惯性矩(z轴通过形心)。,解:,-,37,第三节常用截面梁的惯性矩、平行移轴公式,补充例题求C截面K点正应力。已知F=1.5kN,a=2m,y=0.06m,b=0.12m,h=0.18m。,解:,C,a,-,38,第三节常用截面梁的惯性矩、平行移轴公式,例9-2图所示长为l的T形截面悬臂梁,自由端受集中力F作用。已知F=15kN,l=1m。试求截面A上1,2,3点的正应力(尺寸单位为mm)。,解:,(1)确定截面形心位置,取z轴与截面的上底边重合。,形心一定在对称轴y上。,矩形1,矩形2,-,39,第三节常用截面梁的惯性矩、平行移轴公式,例9-2图所示长为l的T形截面悬臂梁,自由端受集中力F作用。已知F=15kN,l=1m。试求截面A上1,2,3点的正应力(尺寸单位为mm)。,解:,(2)确定截面对z轴的惯性矩,矩形1,矩形2,T形截面对z轴的惯性矩为,-,40,第三节常用截面梁的惯性矩、平行移轴公式,例9-2图所示长为l的T形截面悬臂梁,自由端受集中力F作用。已知F=15kN,l=1m。试求截面A上1,2,3点的正应力(尺寸单位为mm)。,解:,(3)计算截面A上1,2,3点的正应力,截面A上的弯矩,(拉),(拉),(压),-,41,第四节梁的切应力,一、矩形截面梁的切应力,横截面上的剪力,整个截面对中性轴的惯性矩,梁横截面上距中性轴为y的横线以外部分的面积A*对中性轴的静矩,所求切应力点的位置的梁截面的宽度。,式中:,A*,矩形截面梁切应力计算公式:,-,42,第四节梁的切应力,一、矩形截面梁的切应力,A*,矩形截面梁切应力计算公式:,1.在截面的两端,y=h/2,2.在中性层(轴),y=0,3.切应力分布规律图,讨论:,-,43,第四节梁的切应力,二、工字形及T字形截面梁的切应力,1.工字形截面梁腹板上切应力计算公式:,横截面上的剪力,整个工字形截面对中性轴的惯性矩,为所求应力点到截面边缘间的面积(阴影面积)对中性轴的静矩。,腹板厚度,式中:,-,44,第四节梁的切应力,二、工字形及T字形截面梁的切应力,1.工字形截面梁腹板上切应力计算公式:,讨论:,1.在腹板的两端,切应力最小;,2.在中性轴上,y=0,3.切应力分布规律图(抛物线规律),4.工字形截面梁剪力主要由腹板承担,而弯矩主要由翼缘承担。,-,45,第四节梁的切应力,2.T字形截面梁腹板上切应力计算公式:,讨论:,1.在腹板的下端,,2.在中性轴上,y=0,3.切应力分布规律图(抛物线规律),是阴影面积对中性轴的静矩,-,46,第四节梁的切应力,例93图示矩形截面简支梁,已知l=2m,h=150mm,b=100mm,y1=50mm,F=10kN。试求:(1)m-m截面上K点的切应力,(2)若采用22a号工字钢,求最大切应力。,解:(1)求m-m截面上K点的切应力,或:,-,47,第四节梁的切应力,例93图示矩形截面简支梁,已知l=2m,h=150mm,b=100mm,y1=50mm,F=10kN。试求:(1)m-m截面上K点的切应力,(2)若采用22a号工字钢,求最大切应力。,解:(2)若采用22a号工字钢,求最大切应力。,查表得:,-,48,第五节梁的强度条件,在横向力的作用下,梁的横截面一般同时存在弯曲正应力和弯曲切应力。,为了保证梁能安全地工作,必须使梁内的最大应力不超过材料的许用应力,因此,对上述两种应力应分别建立相应的强度条件。,一、正应力强度条件,二、切应力强度条件,利用强度条件,可解决三种不同类型的工程问题。,(1)强度校核;(2)截面尺寸设计;(3)确定许用载荷。,-,49,第五节梁的强度条件,一、正应力强度条件,1.中性轴为截面对称轴时,Wz称为弯曲截面系数,梁的正应力强度条件为,(1)强度校核,(2)截面尺寸设计,(3)确定许用载荷,等截面梁内的最大正应力发生在弯矩最大的横截面且距中性轴最远的位置。,-,50,第五节梁的强度条件,Wz称为弯曲截面系数,对矩形截面:,对圆形截面:,-,51,第五节梁的强度条件,2.中性轴为截面不对称轴时,比如铸铁等脆性材料制成的梁,,由于材料的,且梁横截面的中性轴一般也不是对称轴,所以梁的,梁上最大拉应力和最大压应力分别不超过材料的许用拉应力和许用压应力。,梁的正应力强度条件为:,思考:如不是脆性材料制成的梁,而是塑性材料的梁,需分别考虑吗?,答:不需要。,只需要求出正应力绝对值最大值max即可。,?,-,52,第五节梁的强度条件,二、切应力强度条件,等截面梁内的最大切应力发生在剪力最大的横截面的中性轴上。,该最大切应力的值应满足,梁的切应力强度条件,-,53,第五节梁的强度条件,注意:,在进行梁的强度计算时,必须同时满足梁的正应力强度条件和切应力强度条件。但在一般情况下,正应力强度条件往往是起主导作用的。,(2)在选择梁的截面时,通常是先按正应力强度条件选择截面尺寸,然后再进行切应力强度校核。,(3)对于某些特殊情况,梁的切应力强度条件也可能起控制作用。例如,梁的跨度很小,或在支座附近有较大的集中力作用,这时梁可能出现弯矩较小,而剪力却很大的情况,这就必须注意切应力强度条件是否满足。又如,对木梁,在木材顺纹方向的抗剪能力很差,也应注意在进行正应力强度较核的同时,进行切应力的强度校核。,-,54,第五节梁的强度条件,等直梁的弯曲强度计算步骤,根据梁的约束性质,分析梁的受力,确定约束力。,画出梁的内力图;由此确定可能的危险截面(最大内力处)。,根据应力分布,确定危险点(最大应力处)。,应用强度条件进行强度计算。,-,55,第五节梁的强度条件,例94一矩形截面简支木梁,梁上作用均布荷载。已知l=4m,b=140mm,h=210mm,q=2kN/m;弯曲时木材的许用拉应力=6.4MPa。试校核梁的强度并求梁能承受的最大荷载。,解:,(1)校核强度,最大弯矩发生在跨中截面上,其值为,弯曲截面系数为,最大正应力为,-,56,第五节梁的强度条件,例94一矩形截面简支木梁,梁上作用均布荷载。已知l=4m,b=140mm,h=210mm,q=2kN/m;弯曲时木材的许用拉应力=6.4MPa。试校核梁的强度并求梁能承受的最大荷载。,解:,(2)求最大荷载,根据强度条件,而,所以得,即梁能承受的最大荷载为,-,57,第五节梁的强度条件,例95一槽形截面外伸梁,梁上受均布荷载作用。已知F=20kN,q=10kN/m;材料的许用拉应力+=35MPa,许用压应力-=140MPa。试按正应力强度条件校核梁的强度。,解:,(1)作弯矩图,形心位置是(过程略),按组合截面求截面对中性轴的惯性据:,(2)确定截面几何性质量,-,58,第五节梁的强度条件,例95一槽形截面外伸梁,梁上受均布荷载作用。已知F=20kN,q=10kN/m;材料的许用拉应力+=35MPa,许用压应力-=140MPa。试按正应力强度条件校核梁的强度。,解:,(3)B截面强度校核,梁的上边缘受拉,下边缘受压。,-,59,第五节梁的强度条件,例95一槽形截面外伸梁,梁上受均布荷载作用。已知F=20kN,q=10kN/m;材料的许用拉应力+=35MPa,许用压应力-=140MPa。试按正应力强度条件校核梁的强度。,解:,(4)D截面强度校核,梁的上边缘受压,下边缘受拉。,故梁的强度满足要求。,-,60,第五节梁的强度条件,例96试为图示枕木选择矩形截面尺寸。已知截面尺寸的比例为bh=34,许用拉应力=6.4MPa,许用切应力=2.5MPa。,解:,(1)作剪力图和弯矩图,(2)按正应力强度条件设计截面,-,61,第五节梁的强度条件,例96试为图示枕木选择矩形截面尺寸。已知截面尺寸的比例为bh=34,许用拉应力=6.4MPa,许用切应力=2.5MPa。,解:,(2)切应力强度校核,取:,-,62,第六节提高梁弯曲强度的主要途径,梁的弯曲强度主要是由正应力强度条件控制的,所以,要提高梁的弯曲强度主要就是要提高梁的弯曲正应力强度。,梁的弯曲正应力强度条件:,目的:降低梁的最大正应力!,-,63,第六节提高梁弯曲强度的主要途径,梁的弯曲正应力强度条件:,一、选择合理的截面形状,对于同种材料,若Wz,用最少的材料获得最大弯曲截面系数。,截面的合理形状,就是在截面面积相同的条件下。比较不同形状截面的Wz值。,-,64,合理程度,第六节提高梁弯曲强度的主要途径,工字形截面比矩形截面合理;矩形比圆形截面合理。,-,65,第六节提高梁弯曲强度的主要途径,矩形比正方形截面合理!,矩形与正方形截面比较:,正方形截面与圆形截面比较:,正方形截面比圆形截面合理!,-,66,第六节提高梁弯曲强度的主要途径,矩形竖放与平放比较:,矩形竖放合理!,-,67,第六节提高梁弯曲强度的主要途径,从应力角度分析:,所以,在用料一定前提下,尽量减小中性轴附近的面积,而使更多的面积分布在离中性轴较远的位置。,薄腹梁,-,68,思考:(1)塑性材料的梁合理截面形状?,第六节提高梁弯曲强度的主要途径,-,69,思考:(2)脆性材料的梁合理截面形状?,第六节提高梁弯曲强度的主要途径,-,70,试从强度方面考虑,哪种截面形状最合适?若为T形截面,则哪种放置方式最为合理?(1)材料为低碳钢;(2)材料为铸铁。,(b),(d),F,补充例题,x,M,第六节提高梁弯曲强度的主要途径,-,71,二、变截面梁,各个横截面具有同样强度的梁等强度梁,第六节提高梁弯曲强度的主要途径,-,72,(1)若b不变,则,按剪切强度要求进行修改设计:,第六节提高梁弯曲强度的主要途径,x截面处:,-,73,第六节提高梁弯曲强度的主要途径,阳台或雨篷等的悬臂梁,-,74,F,M图,Fl/4,第六节提高梁弯曲强度的主要途径,(2)若h不变,-,75,横截面沿梁轴变化的梁变截面梁,第六节提高梁弯曲强度的主要途径,-,76,横截面沿梁轴变化的梁变截面梁,第六节

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论