福建省各市高中数学教学桉例设计一二等奖作品汇编(下).doc_第1页
福建省各市高中数学教学桉例设计一二等奖作品汇编(下).doc_第2页
福建省各市高中数学教学桉例设计一二等奖作品汇编(下).doc_第3页
福建省各市高中数学教学桉例设计一二等奖作品汇编(下).doc_第4页
福建省各市高中数学教学桉例设计一二等奖作品汇编(下).doc_第5页
免费预览已结束,剩余63页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

用二分法求方程的近似解 一、教学内容分析本节课选自普通高中课程标准实验教科书数学1必修本(A版)的第三章3.1.2用二分法求方程的近似解本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位二、学生学习情况分析学生已经学习了函数,理解函数零点和方程根的关系, 初步掌握函数与方程的转化思想但是对于求函数零点所在区间,只是比较熟悉求二次函数的零点,对于高次方程和超越方程对应函数零点的寻求会有困难另外算法程序的模式化和求近似解对他们是一个全新的问题三、设计思想倡导积极主动、勇于探索的学习精神和合作探究式的学习方式;注重提高学生的数学思维能力,发展学生的数学应用意识;与时俱进地认识“双基”,强调数学的内在本质,注意适度形式化;在教与学的和谐统一中体现数学的文化价值;注重信息技术与数学课程的合理整合.四、教学目标 通过具体实例理解二分法的概念,掌握运用二分法求简单方程近似解的方法,从中体会函数的零点与方程根之间的联系及其在实际问题中的应用;能借助计算器用二分法求方程的近似解,让学生能够初步了解逼近思想;体会数学逼近过程,感受精确与近似的相对统一;通过具体实例的探究,归纳概括所发现的结论或规律,体会从具体到一般的认知过程五、教学重点和难点1教学重点:用“二分法”求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识2教学难点:方程近似解所在初始区间的确定,恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解六、教学过程设计(一)创设情境,提出问题问题1:在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障这是一条10km长的线路,如何迅速查出故障所在?如果沿着线路一小段一小段查找,困难很多每查一个点要爬一次电线杆子10km长,大约有200多根电线杆子呢想一想,维修线路的工人师傅怎样工作最合理?以实际问题为背景,以学生感觉较简单的问题入手,激活学生的思维,形成学生再创造的欲望注意学生解题过程中出现的问题,及时引导学生思考,从二分查找的角度解决问题学情预设 学生独立思考,可能出现的以下解决方法:思路1:直接一个个电线杆去寻找思路2:通过先找中点,缩小范围,再找剩下来一半的中点老师从思路2入手,引导学生解决问题:如图,维修工人首先从中点C查用随身带的话机向两个端点测试时,发现AC段正常,断定故障在BC段,再到BC段中点D,这次发现BD段正常,可见故障在CD段,再到CD中点E来查每查一次,可以把待查的线路长度缩减一半,如此查下去,不用几次,就能把故障点锁定在一两根电线杆附近师:我们可以用一个动态过程来展示一下(展示多媒体课件)在一条线段上找某个特定点,可以通过取中点的方法逐步缩小特定点所在的范围(即二分法思想) 设计意图 从实际问题入手,利用计算机演示用二分法思想查找故障发生点,通过演示让学生初步体会二分法的算法思想与方法, 说明二分法原理源于现实生活,并在现实生活中广泛应用(二)师生探究,构建新知 问题2:假设电话线故障点大概在函数的零点位置,请同学们先猜想它的零点大概是什么?我们如何找出这个零点? 1利用函数性质或借助计算机、计算器画出函数图象,通过具体的函数图象帮助学生理解闭区间上的连续函数,如果两个端点的函数值是异号的,那么函数图象就一定与轴相交,即方程在区间内至少有一个解(即上节课的函数零点存在性定理,为下面的学习提供理论基础)引导学生从“数”和“形”两个角度去体会函数零点的意义,掌握常见函数零点的求法,明确二分法的适用范围2我们已经知道,函数在区间(2,3)内有零点,且0,0.进一步的问题是,如何找出这个零点?合作探究:学生先按四人小组探究.(倡导学生积极交流、勇于探索的学习方式,有助于发挥学生学习的主动性)生:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.师:如何有效缩小根所在的区间?生1:通过“取中点”的方法逐步缩小零点所在的范围生2:是否也可以通过“取三等分点或四等分点”的方法逐步缩小零点所在的范围?师:很好,一个直观的想法是:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,可以得到零点的近似值.其实“取中点”和“取三等分点或四等分点”都能实现缩小零点所在的范围.但是在同样可以实现缩小零点所在范围的前提下,“取中点”的方法比取“三等分点或四等分点”的方法更简便.因此,为了方便,下面通过“取中点”的方法逐步缩小零点所在的范围.引导学生分析理解求区间的中点的方法 合作探究:(学生2人一组互相配合,一人按计算器,一人记录过程四人小组中的两组比较缩小零点所在范围的结果)步骤一:取区间(2,3)的中点2.5,用计算器算得.由0,得知,所以零点在区间(2.5,3)内。 步骤二:取区间(2.5,3)的中点2.75,用计算器算得.因为,所以零点在区间(2.5,2.75)内.结论:由于(2,3),所以零点所在的范围确实越来越小了. 如果重复上述步骤,在一定精确度下,我们可以在有限次重复上述步骤后,将所得的零点所在区间内的任一点作为函数零点的近似值特别地,可以将区间端点作为函数零点的近似值引导学生利用计算器边操作边认识,通过小组合作探究,得出教科书上的表32,让学生有更多的时间来思考与体会二分法实质,培养学生合作学习的良好品质学情预设学生通过上节课的学习知道这个函数的零点就是函数图象与x轴的交点的横坐标,故它的零点在区间(2,3)内进一步利用函数图象通过“取中点”逐步缩小零点的范围,利用计算器通过将自变量改变步长减少很快得出表32,找出零点的大概位置设计意图从问题1到问题2,体现了数学转化的思想方法,问题2有着承上启下的作用,使学生更深刻地理解二分法的思想,同时也突出了二分法的特点通过问题2让学生掌握常见函数零点的求法,明确二分法的适用范围3.问题3:对于其他函数,如果存在零点是不是也可以用这种方法去求它的近似解呢?引导学生把上述方法推广到一般的函数,经历归纳方法的一般性过程之后得出二分法及用二分法求函数的零点近似值的步骤对于在区间,上连续不断且满足的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法注意引导学生分化二分法的定义(一是二分法的适用范围,即函数在区间,上连续不断,二是用二分法求函数的零点近似值的步骤)给定精确度,用二分法求函数的零点近似值的步骤如下:1、确定区间,验证,给定精确度;2、求区间,的中点;3、计算:(1)若=,则就是函数的零点;(2)若,则令=(此时零点);(3)若,则令=(此时零点);4、判断是否达到精确度:即若,则得到零点零点值(或);否则重复步骤24利用二分法求方程近似解的过程,可以简约地用下图表示初始区间取区间中点中点函数值为零取新区间满足精确度结束否是否是学情预设 学生思考问题3举出二次函数外,对照步骤观察函数的图象去体会二分法的思想结合二次函数图象和标有、的数轴理解二分法的算法思想与计算原理设计意图以问题研讨的形式替代教师的讲解,分化难点、解决重点,给学生“数学创造”的体验,有利与学生对知识的掌握,并强化对二分法原理的理解学生在讨论、合作中解决问题,充分体会成功的愉悦让学生归纳一般步骤有利于提高学生自主学习的能力,让学生尝试由特殊到一般的思维方法利用二分法求方程近似解的过程,用图表示,既简约又直观,同时能让学生初步体会算法的思想(三)例题剖析,巩固新知例:借助计算器或计算机用二分法求方程的近似解(精确度0.1). 两人一组,一人用计算器求值,一人记录结果;学生讲解缩小区间的方法和过程,教师点评.本例鼓励学生自行尝试,让学生体验解题遇阻时的困惑以及解决问题的快乐.此例让学生体会用二分法来求方程近似解的完整过程,进一步巩固二分法的思想方法.思考:问题(1):用二分法只能求函数零点的“近似值”吗?问题(2):是否所有的零点都可以用二分法来求其近似值?教师有针对性的提出问题,引导学生回答,学生讨论,交流. 反思二分法的特点,进一步明确二分法的适用范围以及优缺点,指出它只是求函数零点近似值的“一种”方法. 设计意图及时巩固二分法的解题步骤,让学生体会二分法是求方程近似解的有效方法.解题过程中也起到了温故转化思想的作用(四)尝试练习,检验成果1、下列函数中能用二分法求零点的是( ).(A)(B)(C)(D)。xyo设计意图让学生明确二分法的适用范围.2、用二分法求图象是连续不断的函数在(1,2)内零点近似值的过程中得到,则函数的零点落在区间( ).(A)(1,1.25)(B)(1.25,1.5) (C)(1.5,2) (D) 不能确定设计意图让学生进一步明确缩小零点所在范围的方法.3借助计算器或计算机,用二分法求方程在区间(2,3)内的近似解(精确度0.1). 设计意图 进一步加深和巩固对用二分法求方程近似解的理解.(五)课堂小结,回顾反思学生归纳,互相补充,老师总结:1、理解二分法的定义和思想,用二分法可以求函数的零点近似值,但要保证该函数在零点所在的区间内是连续不断;2、用二分法求方程的近似解的步骤.设计意图帮助学生梳理知识,形成完整的知识结构.同时让学生知道理解二分法定义是关键,掌握二分法解题的步骤是前提,实际应用是深化.(六)课外作业1书面作业第92页习题3.1A组3、4、5;2知识链接第91页阅读与思考“中外历史上的方程求解”3课外思考:如果现在地处学校附近的地下自来水管某处破裂了,那么怎么找出这个破裂处,要不要把水泥板全部掀起?板书设计3.1.2用二分法求方程的近似解1二分法的定义2用二分法求函数的零点近似值的步骤3用二分法求方程的近似解七、教学反思这节课既是一堂新课又是一堂探究课.整个教学过程,以问题为教学出发点, 以教师为主导,学生为主体,设计情境激发学生的学习动机,激励学生去取得成功,顺应合理的逻辑结构和认知结构,符合学生的认知规律和心理特点,重视思维训练,发挥学生的主体作用,注意数学思想方法的溶入渗透,满足学生渴望的奖励结构.整个教学设计中,特别注重以下几个方面:(1)重视学生的学习体验,突出他们的主体地位.训练了他们用从特殊到一般,再由一般到特殊的思维方式解决问题的能力.不断加强他们的转化类比思想.(2)注重将用二分法求方程的近似解的方法与现实生活中案例联系起来,让学生体会数学方法来源于现实生活,又可以解决生活中的问题.(3)注重学生参与知识的形成过程,动手、动口、动脑相结合,使他们“听”有所思,“学”有所获,增强学习数学的信心,体验学习数学的乐趣.(4)注重师生之间、同学之间互动,注重他们之间的相互协作,共同提高.福建师大附中 周裕燕点评:本节课既是一堂新课又是一堂探究课.如何在数学课堂教学中体现新课程理念,本课例进行了有益的探索。整个教学设计过程,以问题为出发点,以教师为主导,学生为主体,设计的问题情境顺应合理的逻辑结构和认知结构,符合学生的认知规律和心理特点,有效地激发了学生的学习动机;重视思维训练,注意数学思想方法的溶入渗透。本节课采用 “问题情境 意义建构 数学理论 数学运用 回顾反思” 的教学流程。周老师在课题引入时,以实际问题为背景,以学生感觉较简单的问题入手,“让学生找出电话线故障点,”有效地激发学生学习的欲望和探究的兴趣。采用探究教学方式,在师生共同探究的过程中,构建新的知识,既让学生了解数学概念和结论产生的过程,同时也培养了学生独立思考和勇于质疑的品质。此外,周老师在本课例的设计中,能很好地将现代信息技术与数学课程进行有机的整合,使“方法建构、技术运用、算法渗透”三者同步发展。“用二分法求方程的近似解”是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础。周老师不仅注意到本节知识在这一章中的重要性,而且还注意将本节知识与现实生活中的案例联系起来,让学生体会数学方法来源于现实生活,又可以解决生活中的问题。正弦定理(2) 一、教学内容分析本节内容安排在普通高中课程标准实验教科书数学必修5(人教A版)第一章,正弦定理第一课时,是在高二学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,因而定理本身的应用又十分广泛。根据实际教学处理,正弦定理这部分内容共分为三个层次:第一层次教师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“ 向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察实验猜想证明应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。二、学情分析对普高高二的学生来说,已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。三、设计思想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。四、教学目标:1让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。2通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。3通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。4培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。五、教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。教学难点:正弦定理的猜想提出过程。教学准备:制作多媒体课件,学生准备计算器,直尺,量角器。六、教学过程:(一)结合实例,激发动机师生活动:教师:展示情景图如图1,船从港口B航行到港口C,测得BC的距离为,船在港口C卸货后继续向港口A航行,由于船员的疏忽没有测得CA距离,如果船上有测角仪我们能否计算出A、B的距离?学生:思考提出测量角A,C 教师:若已知测得, ,要计算A、B两地距离,你 (图1)有办法解决吗?学生:思考交流,画一个三角形,使得为6cm, ,量得距离约为4.9cm,利用三角形相似性质可知AB约为490m。老师:对,很好,在初中,我们学过相似三角形,也学过解直角三角形,大家还记得吗?师生:共同回忆解直角三角形,直角三角形中,已知两边,可以求第三边及两个角。直角三角形中,已知一边和一角,可以求另两边及第三个角。教师:引导,是斜三角形,能否利用解直角三角形,精确计算AB呢?学生:思考,交流,得出过作于如图2,把分为两个直角三角形,解题过程,学生阐述,教师板书。解:过作于(图2)在中,在中,教师:表示对学生赞赏,那么刚才解决问题的过程中,若,能否用、表示呢?教师:引导学生再观察刚才解题过程。学生:发现,教师:引导,在刚才的推理过程中,你能想到什么?你能发现什么?学生:发现即然有,那么也有,。教师:引导,我们习惯写成对称形式,因此我们可以发现,是否任意三角形都有这种边角关系呢?设计意图:兴趣是最好的老师。如果一节课有良好的开头,那就意味着成功的一半。因此,我通过从学生日常生活中的实际问题引入,激发学生思维,激发学生的求知欲,引导学生转化为解直角三角形的问题,在解决问题后,对特殊问题一般化,得出一个猜测性的结论猜想,培养学生从特殊到一般思想意识,培养学生创造性思维能力。(二)数学实验,验证猜想教师:给学生指明一个方向,我们先通过特殊例子检验是否成立,举出特例。(1)在ABC中,A,B,C分别为,对应的边长a:b:c为1:1:1,对应角的正弦值分别为,引导学生考察,的关系。(学生回答它们相等) (2)、在ABC中,A,B,C分别为,对应的边长a:b:c为1:1:,对应角的正弦值分别为,1;(学生回答它们相等) (3)、在ABC中,A,B,C分别为,对应的边长a:b:c为1:2,对应角的正弦值分别为,1。(学生回答它们相等)(图3) (图3)教师:对于呢?BaACcb(图4)学生:思考交流得出,如图4,在RtABC中,设BC=a,AC=b,AB=c,则有,又,则从而在直角三角形ABC中,教师:那么任意三角形是否有呢?学生按事先安排分组,出示实验报告单,让学生阅读实验报告单,质疑提问:有什么不明白的地方或者有什么问题吗?(如果学生没有问题,教师让学生动手计算,附实验报告单。)学生:分组互动,每组画一个三角形,度量出三边和三个角度数值,通过实验数据计算,比较、的近似值。 教师:借助多媒体演示随着三角形任意变换,、值仍然保持相等。我们猜想:=设计意图:让学生体验数学实验,激起学生的好奇心和求知欲望。学生自己进行实验,体会到数学实验的归纳和演绎推理的两个侧面。(三)证明猜想,得出定理师生活动:教师:我们虽然经历了数学实验,多媒体技术支持,对任意的三角形,如何用数学的思想方法证明呢?前面探索过程对我们有没有启发?学生分组讨论,每组派一个代表总结。(以下证明过程,根据学生回答情况进行叙述)学生:思考得出在中,成立,如前面检验。在锐角三角形中,如图5设,作:,垂足为在中,(图5)在中,同理,在中, 在钝角三角形中,如图6设为钝角,作交的延长线于(图6)在中,在中,同锐角三角形证明可知 教师:我们把这条性质称为正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即还有其它证明方法吗?学生:思考得出,分析图形(图7),对于任意ABC,由初中所学过的面积公式可以得出:,而由图中可以看出:,=等式中均除以后可得, 即。教师边分析边引导学生,同时板书证明过程。(图7)ABCDEFbac(图7) 在刚才的证明过程中大家是否发现三角形高,三角形的面积:,能否得到新面积公式学生:得到三角形面积公式教师:大家还有其他的证明方法吗?比如:、都等于同一个比值,那么它们也相等,这个到底有没有什么特殊几何意义呢?(图8)学生:在前面的检验中,中,恰为外接接圆的直径,即,所以作的外接圆,为圆心,连接并延长交圆于,把一般三角形转化为直角三角形。证明:连续并延长交圆于, 在中,即同理可证:,教师:从刚才的证明过程中, ,显示正弦定理的比值等于三角形外接圆的直径,我们通过“作高法”、“等积法”、“外接圆法”等平面几何方法证明正弦定理,能否利用其他知识来证明正弦定理?比如,在向量中,我也学过,这与边的长度和三角函数值有较为密切的联系,是否能够利用向量积来证明正弦定理呢?学生:思考(联系作高的思想)得出:在锐角三角形中,作单位向量垂直于,(图9)即同理:对于钝角三角形,直角三角形的情况作简单交代。教师:由于时间有限,对正弦定理的证明到此为止,有兴趣的同学回家再探索。设计意图:经历证明猜想的过程,进一步引导启发学生利用已有的数学知识论证猜想,力图让学生体验数学的学习过程。(四)利用定理,解决引例师生活动:教师:现在大家再用正弦定理解决引例中提出的问题。学生:马上得出在中,(五)了解解三角形概念设计意图:让学生了解解三角形概念,形成知识的完整性教师:一般地,把三角形的三个角、和它们的对边、叫做三角形的元素,已知,三角形的几个元素,求其他元素的过程叫做解三角形。设计意图:利用正弦定理,重新解决引例,让学生体会用新的知识,新的定理,解决问题更方便,更简单,激发学生不断探索新知识的欲望。(六)运用定理,解决例题师生活动:教师:引导学生从分析方程思想分析正弦定理可以解决的问题。学生:讨论正弦定理可以解决的问题类型:如果已知三角形的任意两个角与一边,求三角形的另一角和另两边,如;如果已知三角形任意两边与其中一边的对角,求另一边与另两角,如。师生:例1的处理,先让学生思考回答解题思路,教师板书,让学生思考主要是突出主体,教师板书的目的是规范解题步骤。例1:在中,已知,解三角形。分析“已知三角形中两角及一边,求其他元素”,第一步可由三角形内角和为求出第三个角C,再由正弦定理求其他两边。例2:在中,已知,解三角形。例2的处理,目的是让学生掌握分类讨论的数学思想,可先让中等学生讲解解题思路,其他同学补充交流学生:反馈练习(教科书第5页的练习)用实物投影仪展示学生中解题步骤规范的解答。设计意图:自己解决问题,提高学生学习的热情和动力,使学生体验到成功的愉悦感,变“要我学”为“我要学”,“我要研究”的主动学习。(七)尝试小结:教师:提示引导学生总结本节课的主要内容。学生:思考交流,归纳总结。师生:让学生尝试小结,教师及时补充,要体现:(1)正弦定理的内容()及其证明思想方法。(2)正弦定理的应用范围:已知三角形中两角及一边,求其他元素;已知三角形中两边和其中一边所对的角,求其他元素。(3)分类讨论的数学思想。设计意图:通过学生的总结,培养学生的归纳总结能力和语言表达能力。(八)作业设计作业:第10页习题1.1A组第1、2题。思考题:例2:在中,已知,解三角形。例2中分别改为,并解三角形,观察解的情况并解释出现一解,两解,无解的原因。课外链接:课后通过查阅相关书籍,上网搜索,了解关于正弦定理的发展及应用(相关网址:)七、设计思路:本节课,学生在不知正弦定理内容和证明方法的前提下,在教师预设的思路中,学生积极主动参与一个个相关联的探究活动过程,通过“观察实验归纳猜想证明”的数学思想方法发现并证明定理,让学生经历了知识形成的过程,感受到创新的快乐,激发学生学习数学的兴趣。其次,以问题为导向设计教学情境,促使学生去思考问题,去发现问题,让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。1、 结合实例,激发动机数学源于现实,从学生日常生活中的实际问题引入,激发学生学习的兴趣,引导启发学生利用已有的知识解决新的问题,方法一通过相似三角形相似比相等进行计算,方法二转化解直角三角形。让学在解决问题中发现新知识,提出猜想,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。2、数学实验,验证猜想通过特例检验,让学生动手实验,提高了学生实验操作、分析思考和抽象概括的能,激发学生的好奇心和求知欲望,体会到数学实验的归纳和演绎推理的两个侧面。3、证明猜想,得出定理引导启发学生从角度进行证明定理,展示自己的知识,培养学生解决问题的能力,增强学习的兴趣,爱好,在知识的形成、发展过程中展开思维,培养推理的意识。附一:实验报告单组长:组员:试验目的研究三角形中各边和它对角的正弦值的比(,)是否相等。实验器材计算器,直尺,量角器,硬纸板(由老师统一发)实验方法画一个任意三角形,量取三边和三个角的值,并计算。实验内容三边:a= b= c= 三角:A= B= C= 计算:= = = (精确到小数点后两位)结论:福安一中 陈桢仔 林旭点评:本节定理教学课,教师把重点放在定理的发现与证明上,符合新课标重视过程与方法的理念,克服了传统教学只注重结论的倾向。首先,利用解决一个可测量两角一对边,求另一对边的实际问题引入,在解决实际问题中,引导学生发现“三角形三边与其对应角的正弦值的比相等”的规律;通过对特殊三角形的验证,大胆猜想对任意三角形成立;接着证明了这个定理。在课堂上展示了定理的发现过程,使学生感受到创新的快乐,激发学生学习数学的兴趣,同时让学生体验了“观察实验归纳猜想证明”的数学思想方法,经历了知识形成的过程,符合新课标重视过程与方法的理念。其次,在解决引例中的测量问题时利用用初中相似三角形知识、正弦定理的不同证法(转化为直角三角形、辅助以三角形外接圆、向量)等,都体现了 “在已有知识体系的基础上去建构新的知识体系”的理念,加强了知识间的联系,培养了学生思维的灵活性。定理证明的方法一、方法二,参透了分类 、转化的数学思想。但是,本节课的教学内容还是偏多,在时间分配上要有规划,突出重点,删繁就简;引入的例题要注意条件更加明确直接,以免产生歧义,冲淡主体,浪费时间。总之,本节课有效地采用了探究式教学,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察实验猜想证明应用”等环节,教学过程流畅,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。正弦定理(3)一、教学内容分析“正弦定理”是普通高中课程标准数学教科书数学(必修5)(人教版)第一章第一节的主要内容,它既是初中“解直角三角形”内容的直接延拓,也是三角函数一般知识和平面向量等知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。为什么要研究正弦定理?正弦定理是怎样发现的?其证明方法是怎样想到的?还有别的证法吗?这些都是教材没有回答,而确实又是学生所关心的问题。本节课是“正弦定理”教学的第一课时,其主要任务是引入并证明正弦定理,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且通过对定理的探究,能使学生体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。二、学生学习情况分析学生在初中已经学习了解直角三角形的内容,在必修4中,又学习了三角函数的基础知识和平面向量的有关内容,对解直角三角形、三角函数、平面向量已形成初步的知识框架,这不仅是学习正弦定理的认知基础,同时又是突破定理证明障碍的强有力的工具。正弦定理是关于任意三角形边角关系的重要定理之一,课程标准强调在教学中要重视定理的探究过程,并能运用它解决一些实际问题,可以使学生进一步了解数学在实际中的应用,从而激发学生学习数学的兴趣,也为学习正弦定理提供一种亲和力与认同感。三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。四、教学目标1、知识与技能:通过对任意三角形的边与其对角的关系的探索,掌握正弦定理的内容及其证明方法。2、过程与方法:让学生从已有的知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察、归纳、猜想、证明,由特殊到一般得到正弦定理等方法,体验数学发现和创造的历程。3、情感态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。五、教学重点与难点重点:正弦定理的发现和推导难点:正弦定理的推导六、教学过程设计(一)设置情境利用投影展示:如图1,一条河的两岸平行,河宽。因上游暴发特大洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及留守人员用船尽快转运到正对岸的码头B处或其下游的码头C处,请你确定转运方案。已知船在静水中的速度,水流速度。【设计意图】培养学生的“数学起源于生活,运用于生活”的思想意识,同时情境问题的图形及解题思路均为研究正弦定理做铺垫。(二)提出问题师:为了确定转运方案,请同学们设身处地地考虑有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。待各小组将问题交给老师后,老师筛选了几个问题通过投影向全班展示,经大家归纳整理后得到如下的五个问题:1、船应开往B处还是C处?2、船从A开到B、C分别需要多少时间?3、船从A到B、C的距离分别是多少?4、船从A到B、C时的速度大小分别是多少?5、船应向什么方向开,才能保证沿直线到达B、C?【设计意图】通过小组交流,提供一定的研究学习与情感交流的时空,培养学生合作学习的能力;问题源于学生,突出学生学习的主体性,能激发学生学习的兴趣;问题通过老师的筛选,确定研究的方向,体现教师的主导作用。师:谁能帮大家讲解,应该怎样解决上述问题?大家经过讨论达成如下共识:要回答问题1,需要解决问题2,要解决问题2,需要先解决问题3和4,问题3用直角三角形知识可解,所以重点是解决问题4,问题4与问题5是两个相关问题。因此,解决上述问题的关键是解决问题4和5。师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。生1:船从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小及与的夹角:, 用计算器可求得船从A开往C的情况如图3,易求得,还需求及,我还不知道怎样解这两个问题。师:请大家思考,这两个问题的数学实质是什么?部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。【设计意图】将问题数学化,有助于加深学生对问题的理解,有助于培养学生的数学意识。师:请大家讨论一下,如何解决这两个问题?生3:不知道。师:图2的情形大家都会解,但图3的情形却有困难,那么图2与图3有何异同点?生4:图2和图3的情形都是已知三角形的两边和其中一边的对角,求另一边的对角和第三边。但图2中是直角三角形,而图3中不是直角三角形,不能象在直角三角形中可直接利用边角的关系求解。师:图3的情形能否转化成直角三角形来解呢?【设计意图】通过教师的问题引导,启发学生将问题进行转化,培养学生的化归思想,同时为下一步用特例作为突破口来研究正弦定理以及用作高的方法来证明正弦定理做好铺垫。生5:能,过点D作于点G(如图4), ,师:很好!采取分割的方法,将一般三角形化为两个直角三角形求解。但在生活中有许多三角形不是直角三角形,如果每个三角形都划分为直角三角形求解,很不便。能不能象直角三角形一样直接利用边角关系求解呢?三角形中,任意两边与其对角之间有怎样的数量关系?【设计意图】通过教师对学生的肯定评价,创造一个教与学的和谐环境,既激发学生的学习兴趣,使紧接着的问题能更好地得到学生的认同,又有利于学生和教师的共同成长。(三)解决问题1、正弦定理的引入师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的?众学生:先从特殊事例入手,寻求答案或发现解法。可以以直角三角形为特例,先在直角三角形中试探一下。师:如果一般三角形具有某种边角关系,对于特殊的三角形直角三角形也是成立的,因此我们先研究特例,请同学们对直角三角形进行研究,寻找一般三角形的各边及其对角之间有何关系?同学们可以参与小组共同研究。(1)学生以小组为单位进行研究;教师观察学生的研究进展情况或参与学生的研究。(2)展示学生研究的结果。【设计意图】教师参与学生之间的研究,增进师生之间的思维与情感的交流,并通过教师的指导与观察,及时掌握学生研究的情况,为展示学生的研究结论做准备;同时通过展示研究结论,强化学生学习的动机,增进学生的成功感及学习的信心。师:请说出你研究的结论?生7:师:你是怎样想出来的?生7:因为在直角三角形中,它们的比值都等于斜边。师:有没有其它的研究结论?(根据实际情况,引导学生进行分析判断结论正确与否,或留课后进一步深入研究。)师:对一般三角形是否成立呢?众学生:不一定,可以先用具体例子检验,若有一个不成立,则否定结论:若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。师:这是个好主意。那么对等边三角形是否成立呢?生9:成立。师:对任意三角形是否成立,现在让我们借助于几何画板做一个数学实验,【设计意图】引导学生的思维逐步形成“情境思考”“提出问题”“研究特例”“归纳猜想”“实验探究”“理论探究”“解决问题”的思维方式,进而形成解决问题的能力。2、正弦定理的探究(1)实验探究正弦定理师:借助于电脑与多媒体,利用几何画板软件,演示正弦定理教学课件。边演示边引导学生观察三角形形状的变化与三个比值的变化情况。结论:对于任意三角形都成立。【设计意图】通过几何画板软件的演示,使学生对结论的认识从感性逐步上升到理性。师:利用上述结论解决情境问题中图3的情形,并检验与生5的计算结果是否一致。生10:(通过计算)与生5的结果相同。师:如果上述结论成立,则在三角形中利用该结论解决“已知两边和其中一边的对角,求另一边的对角和第三边。”的问题就简单多了。【设计意图】与情境设置中的问题相呼应,间接给出了正弦定理的简单应用,并强化学生学习探究、应用正弦定理的心理需求。(2)点明课题:正弦定理(3)正弦定理的理论探究师:既然是定理,则需要证明,请同学们与小组共同探究正弦定理的证明。探究方案:直角三角形已验证;锐角三角形课堂探究;钝角三角形课后证明。【设计意图】通过分析,确定探究方案。课堂只让学生探究锐角三角形的情形,有助于在不影响探究进程的同时,为探究锐角三角形的情形腾出更多的时间。钝角三角形的情形以课后证明的形式,可使学生巩固课堂的成果。师:请你(生11)到讲台上,讲讲你的证明思路?生11:(走上讲台),设法将问题转化成直角三角形中的问题进行解决。通过作三角形的高,与生5的办法一样,如图5作BC边上的高AD,则,所以,同理可得师:因为要证明的是一个等式,所以应从锐角三角形的条件出发,构造等量关系从而达到证明的目的。注意: 表示的几何意义是三角形同一边上的高不变。这是一个简捷的证明方法!【设计意图】点明此证法的实质是找到一个可以作为证明基础的等量关系,为后续两种方法的提出做铺垫,同时适时对学生作出合情的评价。师:在三角形中还有哪些可以作为证明基础的等量关系呢?学生七嘴八舌地说出一些等量关系,经讨论后确定如下一些与直角三角形有关的等量关系可能有利用价值:三角形的面积不变;三角形外接圆直径不变。在教师的建议下,学生分别利用这两种关系作为基础又得出了如下两种证法:证法二:如图6,设AD、BE、CF分别是的三条高。则有,。证法三:如图7,设是外接圆的直径,则,同理可证:【设计意图】在证明正弦定理的同时,将两边及其夹角的三角形面积公式及一并牵出,使知识的产生自然合理。师:前面我们学习了平面向量,能否运用向量的方法证明呢?师:任意中,三个向量、间有什么关系?生12:师:正弦定理体现的是三角形中边角间的数量关系,由转化成数量关系?生13:利用向量的数量积运算可将向量关系转化成数量关系。师:在两边同乘以向量,有,这里的向量可否任意?又如何选择向量?生14:因为两个垂直向量的数量积为0,可考虑让向量与三个向量中的一个向量(如向量)垂直,而且使三个项的关系式转化成两个项的关系式。师:还是先研究锐角三角形的情形,按以上思路,请大家具体试一下,看还有什么问题?教师参与学生的小组研究,同时引导学生注意两个向量的夹角,最后让学生通过小组代表作完成了如下证明。证法四:如图8,设非零向量与向量垂直。因为,所以即所以,同理可得师:能否简化证法四的过程?(留有一定的时间给学生思考)师:有什么几何意义?生15:把移项可得,由向量数量积的几何意义可知与在方向上的投影相等。生16:我还有一种证法师:请你到讲台来给大家讲一讲。(学生16上台板书自己的证明方法。)证法五:如图9,作,则与在方向上的投影相等,即 故,同理可得 师:利用向量在边上的高上的射影相等,证明了正弦定理,方法非常简捷明了!【设计意图】利用向量法来证明几何问题,学生相对比较生疏,不容易马上想出来,教师通过设计一些递进式的问题给予适当的启发引导,将很难想到的方法合理分解,有利于学生理解接受。(四)小结师:本节课我们是从实际问题出发,通过猜想、实验,归纳等思维方法,最后发现了正弦定理,并从不同的角度证明了它。本节课,我们研究问题的突出特点是从特殊到一般,利用了几何画板进行数学实验。我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。(五)作业1、回顾本节课的整个研究过程,体会知识的发生过程;2、思考:证法五与证法一有何联系?3、思考:能否借助向量的坐标的方法证明正弦定理?4、当三角形为钝角三角形时,证明正弦定理。【设计意图】为保证学生有充足的时间来完成观察、归纳、猜想、探究和证明,小结的时间花得少且比较简单,这将在下一节课进行完善,因此作业的布置也为下节课做一些必要的准备。七、教学反思为了使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。我想到了“情境问题”教学模式,即构建一个以情境为基础,提出问题与解决问题相互引发携手并进的“情境问题”学习链,并根据上述精神,结合教学内容,具体做出了如下设计:创设一个现实问题情境作为提出问题的背景(注:该情境源于普通高中课程标准数学教科书数学(必修4)(人教版)第二章习题 B组第二题,我将其加工成一个具有实际意义的决策型问题);启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题4与5时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后使用几何画板对猜想进行验证,进而引导学生对猜想进行严格的逻辑证明。总之,整个过程让学生通过自主探索、合作交流,亲身经历了“情境思考”“提出问题”“研究特例”“归纳猜想”“实验探究”“理论探究”“解决问题”“反思总结”的历程,使学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,从而使三维教学目标得以实现。大田一中 陈永民点评:本节课是典型合作探究课,教师先设计一个实际问题引导学生讨论问题解决方案,将

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论