




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,2.2直接证明与间接证明,2.2.1综合法和分析法,.,复习,合情推理的结论不一定正确,有待证明;演绎推理得到的结论一定正确.,.,例:已知a0,b0,求证a(b2+c2)+b(c2+a2)4abc,因为b2+c22bc,a0所以a(b2+c2)2abc.,又因为c2+b22bc,b0所以b(c2+a2)2abc.,因此a(b2+c2)+b(c2+a2)4abc.,证明:,.,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法,用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论.,则综合法用框图表示为:,特点:“由因导果”,综合法又叫由因导果法或顺推证法.,.,例1:如图,ABC在平面外,求证:P,Q,R三点共线.,.,证明:因为AB=P,BC=Q,A=,所以P,Q,R,PAB,BC,RAC则得P,Q,R平面ABC,因此P,Q,R是平面ABC与平面的公共点.因为两平面相交有且只有一条交线,所以P,Q,R三点在平面ABC与平面的交线上,即P,Q,R三点共线。,.,.,例3:在中,三个内角、对应的边分别为a、b、c,且、成等差数列,a、b、c成等比数列,求证为等边三角形,证明:由A,B,C成等差数列,有2B=A+C,-因为A,B,C是三角形的内角,所以A+B+C=180o,-所以B=60o。-由a,b,c成等比数列,有b2=ac,-则b2=a2+c2-2accosB=a2+c2-ac,再有得a2+c2-ac=ac,即(a-c)2=0因此a=c。从而有A=C-则由得A=B=C=60o。所以三角形ABC是等边三角形。,.,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法,用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论.,则综合法用框图表示为:,小结,综合法的定义:,.,回顾基本不等式:(a0,b0)的证明.,.,一般地,从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法,特点:执果索因.,用框图表示分析法的思考过程、特点.,分析法又叫执果索因法或叫逆推证法,.,例4:求证,证明:因为都是正数,,所以为了证明,只需证明,展开得,即,只需证明2125,因为2125成立,,所以不等式成立。,.,例5:如图,SA平面ABC,ABBC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F,求证AFSC,证明:要证AFSC,只需证:SC平面AEF,只需证:AESC,只需证:AE平面SBC,只需证:AEBC,只需证:BC平面SAB,只需证:BCSA,只需证:SA平面ABC,因为:SA平面ABC成立,所以.AFSC成立,.,上述过程可用框图表示:,看课本第41页,例题6。,.,一般地,利用已知条件和某些已经学过的定义、定理、公理等,经过一系列的推理、论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。,特点:“由因导果”,小结,综合法又叫由因导果法或顺推证法.,1.综合法的定义:,一般地,从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法,2.分析法的定义:,分析法又叫执果索因法或叫逆推证法,特点:“执果索因”,.,2.2直接证明与间接证明,2.2.2反证法,.,复习,1.直接证明的两种基本证法:,综合法和分析法,2.这两种基本证法的推证过程和特点:,由因导果,执果索因,3、在实际解题时,两种方法如何运用?,通常用分析法寻求思路,再由综合法书写过程,综合法,已知条件,结论,分析法,结论,已知条件,.,思考?,将9个球分别染成红色或白色.那么无论怎样染,至少有5个球是同色的,你能证明这个结论吗?,分析:假设有某种染法使红色球和白色球的个数都不超过4,则球的总数应不超过4+4=8,这与球的总数是9矛盾.因此,无论怎样染,至少有5个球是同色的.,.,把这种不是直接从原命题的条件逐步推得命题成立的证明方法称为间接证明,注:反证法是最常见的间接证法,,一般地,假设原命题不成立(即在原命题的条件下,结论不成立),,经过正确的推理,,最后得出矛盾。,因此说明假设错误,从而证明了原命题成立,,这样的证明方法叫做反证法(归谬法)。,理论,.,反证法的证明过程:,否定结论推出矛盾肯定结论,即分三个步骤:反设归谬存真,反设假设命题的结论不成立;,存真由矛盾结果,断定反设不成立,从而肯定原结论成立。,归谬从假设出发,经过一系列正确的推理,得出矛盾;,用反证法证明命题的过程用框图表示为:,肯定条件否定结论,导致逻辑矛盾,反设不成立,结论成立,反证法的思维方法:正难则反,.,例7已知a0,证明x的方程ax=b有且只有一个根。,证:由于a0,因此方程至少有一个根x=b/a,,注:结论中的有且只有(有且仅有)形式出现,是唯一性问题,常用反证法,如果方程不只一个根,不妨设x1,x2(x1x2)是方程的两个根.,.,例8:已知直线a,b和平面,如果且ab,求证:a,a,b,P,看课本第43页,例题8。,.,归纳总结:,三个步骤:反设归谬存真,归缪矛盾:(1)与已知条件矛盾;(2)与已有公理、定理、定义矛盾;(3)自相矛盾。,.,(1)直接证明有困难,正难则反!,归纳总结:,哪些命题适宜用反证法加以证明?,牛顿曾经说过:“反证法是数学家最精当的武器之一”,(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年统编版(2024)小学语文一年级上册第二单元测试卷及参考答案
- 防汛知识培训工作方案课件
- 防汛救灾知识培训感悟课件
- 防汛抗灾知识培训课件
- 书店行业阅读推广方案
- 防拐防骗培训知识课件
- 【语文】期中练习卷(一) +2025-2026学年统编版语文八年级上册
- 雨水收集盖板更换合同4篇
- 男性输精管结扎术后附睾淤积症护理查房
- 医疗数据的可视化与成本控制分析-洞察及研究
- 工业企业现场监测工况 核查表( 废 气)
- 埃菲尔铁塔精品课件
- DB51∕T 2571-2019 林下黄精种植技术规程
- 大班语言《我喜欢我》课件
- (公开课)26个英文字母书写笔顺动态演示(基础教育)
- 不一样的卡梅拉2-我想有颗星星幼儿绘本
- 安全生产费用投入台账模报表
- 希望杯数学竞赛小学三年级试题
- 高分子化学6离子聚合阳离子
- NB_T 10337-2019《水电工程预可行性研究报告编制规程》_(高清最新)
- 环保节能供热锅炉项目建议书范文
评论
0/150
提交评论