




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,1,数学多媒体课件,制作人:,等差数列的前n项和(一),.,2,(一)复习引入:,提问:,1、等差数列的定义;,(n2nN*),2、等差数列的通项公式:,3、等差中项:,成等差数列,4、设数列a1,a2,a3,an,它的前n项和是sn?,即sn=a1+a2+a3+an,.,3,“小故事”:,高斯是法国伟大的数学家,天文学家.高斯十岁时,有一次老师出了一道题目,老师说:“现在给大家出道题目:1+2+100=?”,过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10算得不亦乐乎时,高斯站起来回答说:,“1+2+3+100=5050,老师问:“你是如何算出答案的?,高斯回答说:,.,4,1+100=101;2+99=101;50+51=101,所以10150=5050,将这个故事抽象成数学问题:,求等差数列1,2,3的前100项和,(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西.,这个故事告诉我们:,(2)该故事还告诉我们求等差数列前n项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法.,.,5,S100=100+99+98+97+2+1(2),(1)+(2)得,2S100=100(1+100),2S100=(1+100)+(2+99)+(3+98)+(100+1),.,6,二、问题2,如图,建筑工地上一堆圆木,从上到下每层的数目分别为1,2,3,10.问共有多少根圆木?请用简便的方法计算.,.,7,S10=1+2+3+4+5+6+7+8+9+10(1),S10=10+9+8+7+6+5+4+3+2+1(2),(1)+(2)得,2s10=(1+10)+(2+9)+(9+2)+(10+1),通过上面的具体的例子,采用“倒序相加法”,利用等差数列的性质,利用“消去中间项”的基本思想,找出求和的简便方法。,.,8,对于公差为d的一般的等差数列an,其前n项的和如何求?,(1)+(2)得:,2sn=(a1+an)+(a2+an-1)+(an+a1),.,9,又,由此得到等差数列an前n项和公式,用上述公式要求必须具备三个条件:n,a1,an,.,10,用上述公式要求必须具备三个条件:n,a1,an,此公式Sn要求必须已知三个条件:n,a1,d(有时比较有用),总之:两个公式都表明,要求Sn必须已知n,a1,an,d中的三个。,.,11,例题讲解,例1在等差数列an中,(1)已知a1=1,a10=10,求s10;,(2)已知a1=3,d=-,求s10;,分析;(1)由已知条件知,应选择公式,(2)由已知条件知,应选择公式,解:(1),.,12,(2)解法1,解法2,A10=3+9*(-1/2)=-3/2,.,13,(1)a1=5,a10=95,s10=(2)a1=100,d=-2,s50=(3)a1=14.5,d=0.7,s26=,练习:,1、填空题(根据下列等差数列an条件,写出相应的sn);,500,2550,604.5,.,14,2、填空:,(1)正整数数列中前n个数的和,sn=(2)正整数数中前n个偶数的和,sn=(3)正整数数列中前n个奇数的和,sn=,n(n+1)/2,n(n+1),n2,提示:(1)正整数数列1,2,3,4,5,6,n,(2)正整数数中前n个偶数2,4,6,2n,(3)正整数数列中前n个奇数1,3,5,2n-1,.,15,本节课学习了以下内容:,1.等差数列的前n项和公式1,2.等差数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保定三中选拔考试题及答案
- 考点解析-人教版八年级《简单机械》专项测评练习题(含答案详解)
- 衡水三模考试题及答案
- 抖店新手出村考试题库及答案
- 西宁市七中考试卷及答案
- 湖北化学高一月考试卷及答案
- 2025年函授高起专学前教育试题及答案
- 2025年云南法检系统书记员招聘考试(公文写作)测试题及答案
- 2025年江苏省事业单位招聘考试教育类专业知识真题模拟训练试题
- 事业单位招聘考试综合类公共基础知识真题模拟试卷(2025年度)
- 孵化器行业培训课件
- 叶云燕老师课件
- 交通运输面试题库及答案
- 精神科分级护理试题及答案
- 2025年秋期新部编人教版六年级上册道德与法治教学计划+进度表
- 九江银行笔试题库及答案
- 2025-2026学年人教版(2024)小学数学三年级上册(全册)教学设计(附目录P296)
- 血管内导管相关性血流感染预防与诊治指南(2025)解读
- 学校心理咨询工作流程
- 古树修复方案(3篇)
- 2025城管执法考试题及答案
评论
0/150
提交评论