计量经济学第四章练习题及参考解答.doc_第1页
计量经济学第四章练习题及参考解答.doc_第2页
计量经济学第四章练习题及参考解答.doc_第3页
计量经济学第四章练习题及参考解答.doc_第4页
计量经济学第四章练习题及参考解答.doc_第5页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章练习题及参考解答4.1 假设在模型中,之间的相关系数为零,于是有人建议你进行如下回归:(1) 是否存在?为什么? (2) (3)是否有?练习题4.1参考解答:(1) 存在。 因为当之间的相关系数为零时,离差形式的有 同理有:(2) 因为 ,且,由于,则 则 (3) 存在。因为当时,同理,有4.2在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。在逐步回归中既可采取每次引进一个解释变量的程序(逐步向前回归),也可以先把所有可能的解释变量都放在一个多元回归中,然后逐一地将它们剔除(逐步向后回归)。加进或剔除一个变量,通常是根据F检验看其对ESS的贡献而作出决定的。根据你现在对多重共线性的认识,你赞成任何一种逐步回归的程序吗?为什么?练习题4.2参考解答:根据对多重共线性的理解,逐步向前和逐步向后回归的程序都存在不足。逐步向前法不能反映引进新的解释变量后的变化情况,即一旦引入就保留在方程中;逐步向后法则一旦某个解释变量被剔出就再也没有机会重新进入方程。而解释变量之间及其与被解释变量的相关关系与引入的变量个数及同时引入哪些变量而呈现出不同,所以要寻找到“最优”变量子集则采用逐步回归较好,它吸收了逐步向前和逐步向后的优点。4.3 下表给出了中国商品进口额Y、国内生产总值GDP、居民消费价格指数CPI。表4.11 中国商品进口额、国内生产总值、居民消费价格指数年份商品进口额(亿元)国内生产总值(亿元)居民消费价格指数(1985=100)19851257.89016.0100.019861498.310275.2106.519871614.212058.6114.319882055.115042.8135.819892199.916992.3160.219902574.318667.8165.219913398.721781.5170.819924443.326923.5181.719935986.235333.9208.419949960.148197.9258.6199511048.160793.7302.8199611557.471176.6327.9199711806.578973.0337.1199811626.184402.3334.4199913736.489677.1329.7200018638.899214.6331.0200120159.2109655.2333.3200224430.3120332.7330.6200334195.6135822.8334.6200446435.8159878.3347.7200554273.7183084.8353.9200663376.9 211923.5359.2200773284.6 249529.9376.5资料来源:中国统计年鉴,中国统计出版社2000年、2008年。请考虑下列模型:1)利用表中数据估计此模型的参数。2)你认为数据中有多重共线性吗? 3)进行以下回归:根据这些回归你能对数据中多重共线性的性质说些什么?4)假设数据有多重共线性,但在5%水平上个别地显著,并且总的F检验也是显著的。对这样的情形,我们是否应考虑共线性的问题?练习题4.3参考解答:(1) 参数估计结果如下(括号内为标准误) (2)居民消费价格指数的回归系数的符号不能进行合理的经济意义解释,且且CPI与进口之间的简单相关系数呈现正向变动。可能数据中有多重共线性。计算相关系数:(3)最大的CI=108.812,表明GDP与CPI之间存在较高的线性相关。 (4)分别拟合的回归模型如下: 单方程拟合效果都很好,回归系数显著,可决系数较高,GDP和CPI对进口分别有显著的单一影响,在这两个变量同时引入模型时影响方向发生了改变,这只有通过相关系数的分析才能发现。(5)如果仅仅是作预测,可以不在意这种多重共线性,但如果是进行结构分析,还是应该引起注意。4.4 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造解释变量数据矩阵X才可能避免多重共线性的出现?练习题4.4参考解答: 本题很灵活,主要应注意以下问题:(1)选择变量时要有理论支持,即理论预期或假设;变量的数据要足够长,被解释变量与解释变量之间要有因果关系,并高度相关。(2)建模时尽量使解释变量之间不高度相关,或解释变量的线性组合不高度相关。4.5 克莱因与戈德伯格曾用1921-1950年(1942-1944年战争期间略去)美国国内消费Y和工资收入X1、非工资非农业收入X2、农业收入X3的时间序列资料,利用OLSE估计得出了下列回归方程:括号中的数据为相应参数估计量的标准误差。试对上述模型进行评析,指出其中存在的问题。练习题4.5参考解答:从模型拟合结果可知,样本观测个数为27,消费模型的判定系数,F统计量为107.37,在0.05置信水平下查分子自由度为3,分母自由度为23的F临界值为3.028,计算的F值远大于临界值,表明回归方程是显著的。模型整体拟合程度较高。依据参数估计量及其标准误,可计算出各回归系数估计量的t统计量值:除外,其余的值都很小。工资收入X1的系数的t检验值虽然显著,但该系数的估计值过大,该值为工资收入对消费边际效应,因为它为1.059,意味着工资收入每增加一美元,消费支出的增长平均将超过一美元,这与经济理论和常识不符。另外,理论上非工资非农业收入与农业收入也是消费行为的重要解释变量,但两者的t检验都没有通过。这些迹象表明,模型中存在严重的多重共线性,不同收入部分之间的相互关系,掩盖了各个部分对解释消费行为的单独影响。4.6 理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。为此,收集了中国能源消费总量Y (万吨标准煤)、国民总收入(亿元)X1(代表收入水平)、国内生产总值 (亿元)X2(代表经济发展水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费 (千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等在1985-2007年期间的统计数据,具体如表4.2所示。表4.12 19852007年统计数据年份能源消费国民总收入国内生产总值工业增加值建筑业增加值交通运输邮电增加值人均生活电力消费能源加工转换效率yX1X2X3X4X5X6X71985766829040.790163448.7417.9406.921.368.2919868085010274.410275.23967525.7475.623.268.3219878663212050.612058.64585.8665.8544.926.467.4819889299715036.815042.85777.281066131.266.5419899693417000.916992.3648479478635.366.5119909870318718.318667.86858859.41147.542.467.2199110378321826.221781.58087.11015.11409.746.965.9199210917026937.326923.510284.514151681.854.666.0019931159933526035333.9141882266.52205.661.267.32199412273748108.548197.919480.72964.72898.372.765.2199513117659810.560793.724950.63728.83424.183.571.05199613894870142.571176.629447.64387.44068.593.171.519971377987765344621.64593101.869.23199813221483024.384402.334018.44985.85178.4106.669.4419991338318818989677.135861.55172.15821.8118.269.19200013855398000.599214.64003.65522.37333.4132.469.042001143199108068.2109655.243580.65931.78406.1144.669.032002151797119095.7120332.747431.36465.59393.4156.369.042003174990135174135822.854945.57490.810098.4173.769.42004203227159586.7159878.3652108694.312147.6190.270.712005223319183956.1183084.876912.910133.810526.1216.771.082006246270213131.7211923.591310.911851.112481.1249.471.242007265583251483.2249529.9107367.214014.114604.1274.971.25资料来源:中国统计年鉴,中国统计出版社2000、2008年版。要求:1)建立对数多元线性回归模型,分析回归结果。2)如果决定用表中全部变量作为解释变量,你预料会遇到多重共线性的问题吗?为什么?3)如果有多重共线性,你准备怎样解决这个问题?明确你的假设并说明全部计算。练习题4.6参考解答:(1)建立对数线性多元回归模型,引入全部变量建立对数线性多元回归模型如下:生成: lny=log(y), 同样方法生成: lnx1,lnx2,lnx3,lnx4,lnx5,lnx6,lnx7.作全部变量对数线性多元回归,结果为: 从修正的可决系数和F统计量可以看出,全部变量对数线性多元回归整体对样本拟合很好,各变量联合起来对能源消费影响显著。可是其中的lnX3、lnX4、lnX6对lnY影响不显著,而且lnX2、lnX5的参数为负值,在经济意义上不合理。所以这样的回归结果并不理想。 (2) 预料此回归模型会遇到多重共线性问题, 因为国民总收入与GDP本来就是一对关联指标;而工业增加值、建筑业增加值、交通运输邮电业增加值则是GDP的组成部分。这两组指标必定存在高度相关。解释变量国民总收入(亿元)X1(代表收入水平)、国内生产总值(亿元)X2(代表经济发展水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费 (千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等很可能线性相关,计算相关系数如下:可以看出lnx1与lnx2、lnx3、lnx4、lnx5、lnx6之间高度相关,许多相关系数高于0.900以上。如果决定用表中全部变量作为解释变量,很可能会出现严重多重共线性问题。(3)因为存在多重共线性,解决方法如下:A:修正理论假设,在高度相关的变量中选择相关程度最高的变量进行回归建立模型:而对变量取对数后,能源消费总量的对数与人均生活电力消费的对数相关程度最高,可建立这两者之间的回归模型。如B:进行逐步回归,直至模型符合需要研究的问题,具有实际的经济意义和统计意义。采用逐步回归的办法,去检验和解决多重共线性问题。分别作对的一元回归,结果如下:一元回归结果:变量lnX1lnX2lnX3lnX4lnX5lnX6lnX7参数估计值0.3160.3150.2770.2970.2730.4218.73t统计量14.98514.629.71813.2211.71716.1734.648可决系数0.9140.9110.8180.8930.8670.9260.507调整可决系数0.9100.9060.8090.8880.8610.9220.484其中加入lnX6的方程调整的可决系数最大, 以lnX6为基础, 顺次加入其他变量逐步回归。结果如下表: 变量lnX1lnX2lnX3lnX4lnX5lnX6lnX7lnX6lnX1-0.186(-0.698)0.666(1.891)0.920lnX6lnX2-0.251(-1.021)0.753(2.308)0.922lnX6lnX30.061(1.548)0.341(5.901)0.927lnX6lnX4-0.119(-0.897)0.585(3.167)0.921lnX6lnX5-0.623(-7.127)1.344(10.314)0.977lnX6lnX70.391(11.071)0.924 经比较,新加入lnX5的方程调整可决系数改进最大, 各参数的t检验也都显著,但是lnX5参数的符号与经济意义不符合。若再加入其他变量后的逐步回归,若剔除不显著的变量和无经济意义的变量后, 仍为第一步所建只包含lnX6的一元回归模型。 如果需要建立多元线性回归模型,则需寻找新的变量或改变模型形式。例如, 不取对数作全部变量多元线性回归,结果为:可以看出还是有严重多重共线性。作逐步回归: 分别作一元回归得到:变量 X1 X2X3X4X5X6X7参数估计值0.73330.73531.665513.190910.8980678.005819332.30t 统计量26.469825.362718.025725.963613.514722.42294.70240.97090.96840.93930.96970.89690.95990.51290.96950.96690.93640.96830.89200.95800.4897以X1为基础加入其他变量, 结果为:X1X2X3X4X5X6X7X1,X26.6399(0.0022)-5.9308(0.0054)0.9785X1,X30.5512(0.0000)0.4349(0.0821)0.9726X1,X40.5040(0.3356)4.1326(0.6580)0.9683X1,X51.0516(0.0000)-5.0269(0.013)0.9766X1,X61.0075(0.0088)-255.80(0.438)0.9690X1,X70.7499(0.0000)-813.44(0.5988)0.9684注: 括号中为p值. 可以发现加入X2、X5、X6、X7后参数的符号不合理,加入X4后并不显著。只有加入X3后修正的可决系数有所提高,而且参数符号的经济意义合理, X3参数估计值的p值为0.0821,在10%的显著性水平下是显著的。所以相对较为合理的模型估计结果可以为: 可是这里的lnX2和lnX5的参数符号为负,在经济意义上并不合理。说明多重共线性影响仍然很严重。 可是,这里的X2的参数为负,是不合理的。从经济意义上看,在各种回归结果中,选择X1 和x3的估计检验结果为:参数经济意义合理,其中的X3在下是显著的。相对说更为合理。4.7 在本章开始的“引子”提出的“农业的发展反而会减少财政收入吗?”的例子中,如果所采用的数据如下表所示表4.13 1978-2007年财政收入及其影响因素数据年份财政收入(亿元)CS农业增加值(亿元)NZ工业增加值(亿元)GZ建筑业增加值(亿元)JZZ总人口(万人)TPOP最终消费(亿元)CUM受灾面积(千公顷)SZM19781132.31027.51607138.2962592239.15079019791146.41270.21769.7143.8975422633.73937019801159.91371.61996.5195.5987053007.94452619811175.81559.52048.4207.11000723361.53979019821212.31777.42162.3220.71016543714833130198313671978.42375.6270.61030084126.43471019841642.92316.12789316.71043574846.33189019852004.82564.43448.7417.91058515986.344365198621222788.73967525.71075076821.84714019872199.43233.04585.8665.81093007804.64209019882357.23865.45777.28101110269839.55087019892664.94265.9648479411270411164.24699119902937.15062.06858859.411433312090.53847419913149.485342.28087.11015.111582314091.95547219923483.375866.610284.5141511717117203.35133319934348.956963.8141882266.511851721899.94882919945218.19572.719480.72964.711985029242.25504319956242.212135.824950.63728.812112136748.24582119967407.9914015.429447.64387.412238943919.54698919978651.1414441.932921.44621.612362648140.65342919989875.9514817.634018.44985.812476151588.250145199911444.0814770.035861.55172.112578655636.949981200013395.2314944.74003.65522.31267436151654688200116386.0415781.343580.65931.712762766878.352215200218903.6416537.047431.36465.512845371691.247119200321715.2517381.754945.57490.812922777449.554506200426396.4721412.7652108694.312998887032.937106200531649.2922420.076912.910133.813075696918.138818200638760.2024040.091310.911851.1131448110595.341091200751321.7828095.0107367.214014.1132129128444.648992(资料来源:中国统计年鉴2008,中国统计出版社2008年版)试分析:为什么会出现本章开始时所得到的异常结果?怎样解决所出现的问题?练习题4.7参考解答:(1)根据样本数据得到各解释变量的样本相关系数矩阵如下: 样本相关系数矩阵 解释变量之间相关系数较高,特别是农业增加值、工业增加值、建筑业增加值、最终消费之间,相关系数都在0.9以上。这显然与第三章对模型的无多重共线性假定不符合。(2)解决方案:采用逐步回归的方式,可以得到没有共线性的回归模型,但可能存在设定偏误。合并工业增加值与建筑业增加值,得到财政收入与第二产业的回归。取对数再回归,可以减低共线性。文 - 汉语汉字 编辑词条文,wen,从玄从爻。天地万物的信息产生出来的现象、纹路、轨迹,描绘出了阴阳二气在事物中的运行轨迹和原理。故文即为符。上古之时,符文一体。古者伏羲氏之王天下也,始画八卦,造书契,以代结绳(爻)之政,由是文籍生焉。-尚书序依类象形,故谓之文。其后形声相益,即谓之字。-说文序仓颉造书,形立谓之文,声具谓之字。-古今通论(1) 象形。甲骨文此字象纹理纵横交错形。文是汉字的一个部首。本义:花纹;纹理。(2) 同本义 figure;veins文,英语念为:text、article等,从字面意思上就可以理解为文章、文字,与古今中外的各个文学著作中出现的各种文字字形密不可分。古有甲骨文、金文、小篆等,今有宋体、楷体等,都在这一方面突出了文的重要性。古今中外,人们对于文都有自己不同的认知,从大的方面来讲,它可以用于表示一个民族的文化历史,从小的方面来说它可用于用于表示单独的一个文字,可用于表示一段话,也可用于人物的姓氏。折叠编辑本段基本字义1事物错综所造成的纹理或形象:灿若锦。2.刺画花纹:身。3记录语言的符号:字。盲。以害辞。4用文字记下来以及与之有关的:凭。艺。体。典。苑。献(指有历史价值和参考价值的图书资料)。采(a文辞、文艺方面的才华;b错杂艳丽的色彩)。5人类劳动成果的总结:化。物。6自然界的某些现象:天。水。7旧时指礼节仪式:虚。繁缛节(过多的礼节仪式)。8文华辞采,与“质”、“情”相对:质彬彬。9温和:火。静。雅。10指非军事的:职。治武功(指礼乐教化和军事功绩)。11指以古汉语为基础的书面语:552言。白间杂。12专指社会科学:科。13掩饰:过饰非。14量词,指旧时小铜钱:一不名。15姓。16 皇帝谥号,经纬天地曰文;道德博闻曰文;慈惠爱民曰文;愍民惠礼曰文;赐民爵位曰文;勤学好问曰文;博闻多见曰文;忠信接礼曰文;能定典礼曰文;经邦定誉曰文;敏而好学曰文;施而中礼曰文;修德来远曰文;刚柔相济曰文;修治班制曰文;德美才秀曰文;万邦为宪、帝德运广曰文;坚强不暴曰文;徽柔懿恭曰文;圣谟丕显曰文;化成天下曰文;纯穆不已曰文;克嗣徽音曰文;敬直慈惠曰文;与贤同升曰文;绍修圣绪曰文;声教四讫曰文。如汉文帝。折叠编辑本段字源字形字源演变与字形比较折叠编辑本段详细字义名1右图是“文”字的甲骨文图片,资料来源:徐无闻主编:甲金篆隶大字典,四川辞书出版社。1991年7月第一版。“文”字的甲骨文字绘画的像一个正面的“大人”,寓意“大象有形”、“象形”;特别放大了胸部,并在胸部画了“心”,含义是“外界客体在心里面的整体影像、整体写真、整体素描、整体速写”。许慎说文解字把“文”解释为“错画也”,意思是“对事物形象进行整体素描,笔画交错,相联相络,不可解构”,这与他说的独体为文、合体为字的话的意思是一致的。“说文解字”这个书名就表示了“文”只能“说”,而“字”则可“解”的意思。“文”是客观事物外在形象的速写,是人类进一步了解事物内在性质的基础,所以它是“字”的父母,“字”是“文”的孩子。“文”生“字”举例(以“哲”为例):先对人手摩画,其文为“手”;又对斧子摩画,其文为“斤”。以手、斤为父母,结合、生子,其子就是“折”(手和斤各代表父母的基因)。这个“折”就是许慎所谓的“字”。“字”从宀从子,“宀”表示“独立的房子”,子在其中,有“自立门户”的意思。故“字”还能与“文”或其他“字”结合,生出新“字”来。在本例,作为字的“折”与作为文的“口”结合,就生出了新的字“哲”。2同本义 figure;veins文,错画也。象交文。今字作纹。东汉许慎说文五章以奉五色。春秋左丘明左传昭公二十五年。注:“青与赤谓之文,赤与白谓之章,白与黑谓之黼,黑与青谓之黻。”美于黼黼文章。荀子非相茵席雕文。韩非子十过织文鸟章,白旆央央。诗小雅六月斑文小鱼。明 刘基诚意伯刘文成公文集3又如:文驾(彩车);文斑(杂色的斑纹);文旆(有文彩的旗帜);文绣(绣有彩色花纹的丝织品;刺花图案);文织(有彩色花纹的丝织品);文鳞(鱼鳞形花纹)。4字,文字(“文”,在先秦时期就有文字的意思,“字”,到了秦朝才有此意。分别讲,“文”指独体字;“字”指合体字。笼统地说,都泛指文字。) character饰以篆文。南朝宋范晔后汉书张衡传分文析字。东汉班固汉书刘歆传夫文,止戈为武。左传宣公十二年距洞数百步,有碑仆道,其文漫灭。王安石游褒禅山记文曰“天启壬戌秋日”。明 魏学洢核舟记文曰“初平山尺”。5又如:甲骨文;金文;汉文;英文;文迹(文字所记载的事迹);文书爻(有关文字、文凭之类的卦象);文异(文字相异);文轨(文字和车轨);文狱(文字狱);文钱(钱。因钱有文字,故称);文状(字据,军令状);文引(通行证;路凭);文定(定婚)。6文章(遣造的词句叫做“文”,结构段落叫做 “章”。) literary composition故说诗者不以文害辞。孟子万章上好古文。唐 韩愈师说属予作文以记之。宋 范仲淹岳阳楼记能述以文。宋 欧阳修醉翁亭记摘其诗文。清 纪昀阅微草堂笔记7又如:文价(文章的声誉);文魔(书呆子);文会(旧时读书人为了准备应试,在一起写文章、互相观摩的集会);文移(旧时官府文书的代称);文雄(擅长写文章的大作家);文意(文章的旨趣);文义(文章的义理);文情(文章的词句和情思);本文(所指的这篇文章);作文(写文章;学习练习所写的文章);文魁(文章魁首);文价(文章的声价);文什(文章与诗篇)。8美德;文德 virtue圣云继之神,神乃用文治。杜牧感怀诗一首9又如:文丈(对才高德韶的老者的敬称);文母(文德之母);文武(文德与武功);文命(文德教命);文惠(文德恩惠);文德(写文章的道德);文薄(谓文德浅薄);文昭(文德昭著)。10.文才;才华。亦谓有文才,有才华 literary talent而文采不表于后世也。汉 司马迁报任安书11又如:文业(才学);文英(文才出众的人);文采风流(横溢的才华与潇洒的风度);文郎(有才华的青少年);文彦(有文才德行的人);文通残锦(比喻剩下不多的才华)。12文献,经典;韵文 document;classics;verse儒以文乱法。韩非子五蠹言必遵修旧文而不穿凿。说文解字叙13辞词句。亦指文字记载 writings;record。如:文几(旧时书信中开头常用的套语。意为将书信呈献于几前);文倒(文句颠倒);文过其实(文辞浮夸,不切实际);文义(文辞);文辞(言词动听的辞令);文绣(辞藻华丽)。14自然界的某些现象 natural phenomenon经纬天地曰文。左传昭公二十八年15又如:天文;地文;水文;文象(日月星辰变化的迹象);文曜(指日月星辰;文星);文昌(星座名)。16文治;文事;文职。与“武”相对。 achievements in culture and education;civilian post文能取胜。史记平原君虞卿列传文不能取胜。文武并用。唐 魏征谏太宗十思疏精神折冲于千里,文武为宪于万邦。明袁可立晋秩兵部右侍郎诰17又如:文臣,文吏(文职官吏);文席(教书先生的几席);文品(文官的品阶);文帅(文职官员出任或兼领统帅);文烈(文治显赫);文员(文职吏员);文阶(文职官阶);文道(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论