




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DynamicsofStructuresJunjieWangDept.ofBridgeEngineering2005.01,simpleharmonic;complex;impulsive;(d)long-duration.,FIGURE1-1Characteristicsandsourcesoftypicaldynamicloadings,1.1BACKGROUND,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,TheDamagesofJiluBridge(inTaiwan)inJijiEarthquakeof1999,TheDamagesofKobeBridge(Japan)inKobeEarthquakeof1995,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,SunshineSkywayBridgeTampaBay,Florida(1980),TasmanBridgeDerwentRiver,Hobart,Australia(1975),CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,1.2ESSENTIALCHARACTERISTICSOFADYNAMICPROBLEM,timevaryingnatureofthedynamicprobleminertialforces(morefundamentaldistinction),FIGURE1-2Basicdifferencebetweenstaticanddynamicloads:(a)staticloading;(b)dynamicloading.,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,1.3SOLUTIONSTOADYNAMICPROBLEM,ContinuousModels(partialdifferentialequations;generalizeddisplacement,sumofaseries),FIGURE1-3Sine-seriesrepresentationofsimplebeamdeflection.,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,DiscreteModels,FIGURE1-4Lumped-massidealizationofasimplebeam.,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,FEM,Athirdmethodofexpressingthedisplacementsofanygivenstructureintermsofanitenumberofdiscretedisplacementcoordinates,whichcombinescertainfeaturesofboththelumpedmassandthegeneralizedcoordinateprocedures,FIGURE1-5Typicalfinite-elementbeamcoordinates.,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,1.4FORMULATIONOFTHEEQUATIONSOFMOTION,1.4.1DirectEquilibrationUsingdAlembertsPrinciple,TheequationsofmotionofanydynamicsystemrepresentexpressionsofNewtonssecondlawofmotion,whichstatesthattherateofchangeofmomentumofanymassparticlemisequaltotheforceactingonit.Thisrelationshipcanbeexpressedmathematicallybythedifferentialequation,Formostproblemsinstructuraldynamicsitmaybeassumedthatmassdoesnotvarywithtime,inwhichcaseEq.(13)maybewritten,thesecondtermiscalledtheinertialforceresistingtheaccelerationofthemass.,knownasdAlembertsprinciple,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,1.4.2PrincipleofVirtualDisplacements,However,ifthestructuralsystemisreasonablycomplexinvolvinganumberofinterconnectedmasspointsorbodiesoffinitesize,thedirectequilibrationofalltheforcesactinginthesystemmaybedifficult.Frequently,thevariousforcesinvolvedmayreadilybeexpressedintermsofthedisplacementdegreesoffreedom,buttheirequilibriumrelationshipsmaybeobscure.Inthiscase,theprincipleofvirtualdisplacementscanbeusedtoformulatetheequationsofmotionasasubstituteforthedirectequilibriumrelationships.,Theprincipleofvirtualdisplacementsmaybeexpressedasfollows.Ifasystemwhichisinequilibriumundertheactionofasetofexternallyappliedforcesissubjectedtoavirtualdisplacement,i.e.,adisplacementpatterncompatiblewiththesystemsconstraints,thetotalworkdonebythesetofforceswillbezero.,1.4.3Hamiltonsprinciple,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,1.5ORGANIZATIONOFTHETEXT,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,PARTISINGLEDEGREEOFFREEDOMSYSTEMS,CHAPTER2.ANALYSISOFFREEVIBRATION,21COMPONENTSOFTHEBASICDYNAMICSYSTEM,Theessentialphysicalpropertiesofanylinearlyelasticstructuralormechanicalsystemsubjectedtoanexternalsourceofexcitationordynamicloadingareitsmass,elasticproperties(exibilityorstiffness),andenergylossmechanismordamping.InthesimplestmodelofaSDOFsystem,eachofthesepropertiesisassumedtobeconcentratedinasinglephysicalelement.AsketchofsuchasystemisshowninFig.21a.,FIGURE2-1IdealizedSDOFsystem:(a)basiccomponents;(b)forcesinequilibrium.,CHAPTER2.ANALYSISOFFREEVIBRATION,22EQUATIONOFMOTIONOFTHEBASICDYNAMICSYSTEM,TheequationofmotionforthesimplesystemismosteasilyformulatedbydirectlyexpressingtheequilibriumofallforcesactingonthemassusingdAlembertsprinciple.,Theequationofmotionismerelyanexpressionoftheequilibriumoftheseforcesasgivenby,InaccordancewithdAlembertsprinciple,theinertialforceistheproductofthemassandacceleration,Assumingaviscousdampingmechanism,thedampingforceistheproductofthedampingconstantcandthevelocity,Finally,theelasticforceistheproductofthespringstiffnessandthedisplacement,CHAPTER2.ANALYSISOFFREEVIBRATION,23INFLUENCEOFGRAVITATIONALFORCES,FIGURE2-2InfluenceofgravityonSDOFequilibrium.,CHAPTER2.ANALYSISOFFREEVIBRATION,ifthetotaldisplacementv(t)isexpressedasthesumofthestaticdisplacementcausedbytheweightWplustheadditionaldynamicdisplacementasshowninFig.22c,i.e.,thenthespringforceisgivenby,thenwehave,andnotingthatleadsto,notingthatdoesnotvarywithtime,itisevidentthatand,thenwehave,Itdemonstratesthattheequationofmotionexpressedwithreferencetothestaticequilibriumpositionofthedynamicsystemisnotaffectedbygravityforces.Forthisreason,displacementsinallfuturediscussionswillbereferencedfromthestaticequilibriumposition,CHAPTER2.ANALYSISOFFREEVIBRATION,24ANALYSISOFUNDAMPEDFREEVIBRATIONS,Ithasbeenshownintheprecedingsectionsthattheequationofmotionofasimplespringmasssystemwithdampingcanbeexpressedas,Thesolutionoftheaboveequationwillbeobtainedbyconsideringfirstthehomogeneousformwiththerightsidesetequaltozero,i.e.,Followthethetheoryofdifferentialequationswithconstantcoefficients,thesolutionoftheaboveequationcanbeobtainedstepbystep,Egin-equation,Ifthedampingiszero,i.e.,c=0,thenonehas,Frequencyoffreevibrationofundampedsystemmeasuredinradians/second,CHAPTER2.ANALYSISOFFREEVIBRATION,Theinitialconditionsare,Thenonehas,v(t)canberewritten,inwhich,Thesolutionofv(t)presentsasimpleharmonicmotion.,CHAPTER2.ANALYSISOFFREEVIBRATION,FIGURE2-3Undampedfree-vibrationresponse,Angularvelocity,orCircularfrequency,Cyclicfrequency,usuallyreferredtoasthefrequencyofmotion(cycles/sec),Theperiodofmotion(measuredinseconds),Itsreciprocal,CHAPTER2.ANALYSISOFFREEVIBRATION,26ANALYSISOFDAMPEDFREEVIBRATIONS,Themotionequationis,Egin-equation,Critically-Dampedsystems,Iftheradicaltermintheaboveequationissetequaltozero,itisevidentthat,Define,CriticalDamping,CHAPTER2.ANALYSISOFFREEVIBRATION,Usingtheinitialconditions,Notethatthisfreeresponseofacriticallydampedsystemdoesnotincludeoscillationaboutthezerodeectionposition;insteaditsimplyreturnstozeroasymptoticallyinaccordancewiththeexponentialterm.However,asinglezerodisplacementcrossingwouldoccurifthesignsoftheinitialvelocityanddisplacementweredifferentfromeachother.Averyusefuldenitionofthecriticallydampedconditiondescribedaboveisthatitrepresentsthesmallestamountofdampingforwhichnooscillationoccursinthefreevibrationresponse.,FIGURE2-4Free-vibrationresponsewithcriticaldamping.,CHAPTER2.ANALYSISOFFREEVIBRATION,Undercritically-Dampedsystems,Ifdampingislessthancritical,thatis,ifccc,itisapparentthatthequantityundertheradicalsigninEgin-equationisnegative.Toevaluatethefreevibrationresponseinthiscase,itisconvenienttoexpressdampingintermsofadampingratiowhichistheratioofthegivendampingtothecriticalvalue,Thenwehave,DampingRatio,DampedFrequency,CHAPTER2.ANALYSISOFFREEVIBRATION,Alternatively,thisresponsecanbewrittenintheform,Inwhich,Notethatforlowdampingvalueswhicharetypicalofmostpracticalstructures,20%,thefrequencyratioisnearlyequaltounity.TherelationbetweendampingratioandfrequencyratiomaybedepictedgraphicallyasacircleofunitradiusasshowninthefollowingFigure.,FIGURE2-5Relationshipbetweenfrequencyratioanddampingratio.,CHAPTER2.ANALYSISOFFREEVIBRATION,Itisofinteresttonotethattheunderdampedsystemoscillatesabouttheneutralposition,withaconstantcircularfrequency.,FIGURE2-6Free-vibrationresponseofundercritically-dampedsystem.,CHAPTER2.ANALYSISOFFREEVIBRATION,Thetruedampingcharacteristicsoftypicalstructuralsystemsareverycomplexanddifficulttodefine.However,itiscommonpracticetoexpressthedampingofsuchrealsystemsintermsofequivalentviscousdampingratioswhichshowsimilardecayratesunderfreevibrationconditions.,Consideranytwosuccessivepositivepeaks,oneobtainsthesocalledlogarithmicdecrementofdamping,Forlowvaluesofdampingcanbeapproximatedby,SufficientaccuracyisobtainedbyretainingonlythersttwotermsintheTaylorsseriesexpansionontherighthandside,inwhichcase,CHAPTER2.ANALYSISOFFREEVIBRATION,FIGURE2-7Damping-ratiocorrectionfactor,Thisgraphpermitsonetocorrectthedampingratioobtainedbytheapproximatemethod.,Forlightlydampedsystems,greateraccuracyinevaluatingthedampingratiocanbeobtainedbyconsideringresponsepeakswhichareseveralcyclesapart,saymcycles;then,whichcanbesimpliedforlowdampingtoanapproximaterelation,Whendampedfreevibrationsareobservedexperimentally,aconvenientmethodforestimatingthedampingratioistocountthenumberofcyclesrequiredtogivea50percentreductioninamplitude.,CHAPTER2.ANALYSISOFFREEVIBRATION,FIGURE2-8Dampingratiovs.numberofcyclesrequiredtoreducepeakamplitudeby50percent.,ExampleE21.Aonestorybuildingisidealizedasarigidgirdersupportedbyweightlesscolumns,asshowninFig.E21.Inordertoevaluatethedynamicpropertiesofthisstructure,afreevibrationtestismade,inwhichtheroofsystem(rigidgirder)isdisplacedlaterallybyahydraulicjackandthensuddenlyreleased.Duringthejackingoperation,itisobservedthataforceof9,072kgisrequiredtodisplace
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国再生资源行业信用体系建设与风险管理研究报告
- 2025-2030中国再生资源产业与循环经济示范区联动发展报告
- 2022-2023联影医疗ESG社会责任报告:供应链合作伙伴的社会责任实践
- 中国交建2022-2023年度ESG发展报告:与合作伙伴共建可持续供应链
- 2025年学历类自考学前教育行政与管理-秘书参谋职能概论参考题库含答案解析(5套试卷)
- 2025年学历类自考学前教育研究方法-财务管理学参考题库含答案解析(5套试卷)
- 2025年铜及铜合金材项目提案报告模板
- 2025年学历类自考学前教育史-现代管理学参考题库含答案解析(5套试卷)
- 2025年学历类自考学前教育原理-管理心理学参考题库含答案解析(5套试卷)
- 2025年学历类自考学前心理学-马克思主义基本原理参考题库含答案解析(5套试卷)
- 19.《只有一个地球》-课前预习单-小学语文六年级上册课前
- 高中英语:倒装句专项练习(附答案)
- 【新教材】部编版小学道德与法治四年级上册-全册课件
- DB65-T 4762-2023 油田地面工程建设节能技术规范
- 2024至2030年中国智慧用电产业“十四五”市场预测与发展规划分析报告
- 输血治疗中的大数据分析
- 《旅游经济学(第3版)》全套教学课件
- 大学生心理健康与发展(高等院校心理健康教育)全套教学课件
- 人教版高一下学期期末考试数学试卷与答案解析(共五套)
- 《福建省建筑工程施工文件管理规程2》
- 研发项目策划书
评论
0/150
提交评论