结构动力学课件-1dyanmicsofstructures-ch1ch_第1页
结构动力学课件-1dyanmicsofstructures-ch1ch_第2页
结构动力学课件-1dyanmicsofstructures-ch1ch_第3页
结构动力学课件-1dyanmicsofstructures-ch1ch_第4页
结构动力学课件-1dyanmicsofstructures-ch1ch_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DynamicsofStructuresJunjieWangDept.ofBridgeEngineering2005.01,simpleharmonic;complex;impulsive;(d)long-duration.,FIGURE1-1Characteristicsandsourcesoftypicaldynamicloadings,1.1BACKGROUND,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,TheDamagesofJiluBridge(inTaiwan)inJijiEarthquakeof1999,TheDamagesofKobeBridge(Japan)inKobeEarthquakeof1995,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,SunshineSkywayBridgeTampaBay,Florida(1980),TasmanBridgeDerwentRiver,Hobart,Australia(1975),CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,1.2ESSENTIALCHARACTERISTICSOFADYNAMICPROBLEM,timevaryingnatureofthedynamicprobleminertialforces(morefundamentaldistinction),FIGURE1-2Basicdifferencebetweenstaticanddynamicloads:(a)staticloading;(b)dynamicloading.,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,1.3SOLUTIONSTOADYNAMICPROBLEM,ContinuousModels(partialdifferentialequations;generalizeddisplacement,sumofaseries),FIGURE1-3Sine-seriesrepresentationofsimplebeamdeflection.,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,DiscreteModels,FIGURE1-4Lumped-massidealizationofasimplebeam.,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,(a)1999年台湾集集地震集鹿大桥破坏状态,FEM,Athirdmethodofexpressingthedisplacementsofanygivenstructureintermsofanitenumberofdiscretedisplacementcoordinates,whichcombinescertainfeaturesofboththelumpedmassandthegeneralizedcoordinateprocedures,FIGURE1-5Typicalfinite-elementbeamcoordinates.,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,1.4FORMULATIONOFTHEEQUATIONSOFMOTION,1.4.1DirectEquilibrationUsingdAlembertsPrinciple,TheequationsofmotionofanydynamicsystemrepresentexpressionsofNewtonssecondlawofmotion,whichstatesthattherateofchangeofmomentumofanymassparticlemisequaltotheforceactingonit.Thisrelationshipcanbeexpressedmathematicallybythedifferentialequation,Formostproblemsinstructuraldynamicsitmaybeassumedthatmassdoesnotvarywithtime,inwhichcaseEq.(13)maybewritten,thesecondtermiscalledtheinertialforceresistingtheaccelerationofthemass.,knownasdAlembertsprinciple,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,1.4.2PrincipleofVirtualDisplacements,However,ifthestructuralsystemisreasonablycomplexinvolvinganumberofinterconnectedmasspointsorbodiesoffinitesize,thedirectequilibrationofalltheforcesactinginthesystemmaybedifficult.Frequently,thevariousforcesinvolvedmayreadilybeexpressedintermsofthedisplacementdegreesoffreedom,buttheirequilibriumrelationshipsmaybeobscure.Inthiscase,theprincipleofvirtualdisplacementscanbeusedtoformulatetheequationsofmotionasasubstituteforthedirectequilibriumrelationships.,Theprincipleofvirtualdisplacementsmaybeexpressedasfollows.Ifasystemwhichisinequilibriumundertheactionofasetofexternallyappliedforcesissubjectedtoavirtualdisplacement,i.e.,adisplacementpatterncompatiblewiththesystemsconstraints,thetotalworkdonebythesetofforceswillbezero.,1.4.3Hamiltonsprinciple,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,1.5ORGANIZATIONOFTHETEXT,CHAPTER1.OVERVIEWOFSTRUCTURALDYNAMICS,PARTISINGLEDEGREEOFFREEDOMSYSTEMS,CHAPTER2.ANALYSISOFFREEVIBRATION,21COMPONENTSOFTHEBASICDYNAMICSYSTEM,Theessentialphysicalpropertiesofanylinearlyelasticstructuralormechanicalsystemsubjectedtoanexternalsourceofexcitationordynamicloadingareitsmass,elasticproperties(exibilityorstiffness),andenergylossmechanismordamping.InthesimplestmodelofaSDOFsystem,eachofthesepropertiesisassumedtobeconcentratedinasinglephysicalelement.AsketchofsuchasystemisshowninFig.21a.,FIGURE2-1IdealizedSDOFsystem:(a)basiccomponents;(b)forcesinequilibrium.,CHAPTER2.ANALYSISOFFREEVIBRATION,22EQUATIONOFMOTIONOFTHEBASICDYNAMICSYSTEM,TheequationofmotionforthesimplesystemismosteasilyformulatedbydirectlyexpressingtheequilibriumofallforcesactingonthemassusingdAlembertsprinciple.,Theequationofmotionismerelyanexpressionoftheequilibriumoftheseforcesasgivenby,InaccordancewithdAlembertsprinciple,theinertialforceistheproductofthemassandacceleration,Assumingaviscousdampingmechanism,thedampingforceistheproductofthedampingconstantcandthevelocity,Finally,theelasticforceistheproductofthespringstiffnessandthedisplacement,CHAPTER2.ANALYSISOFFREEVIBRATION,23INFLUENCEOFGRAVITATIONALFORCES,FIGURE2-2InfluenceofgravityonSDOFequilibrium.,CHAPTER2.ANALYSISOFFREEVIBRATION,ifthetotaldisplacementv(t)isexpressedasthesumofthestaticdisplacementcausedbytheweightWplustheadditionaldynamicdisplacementasshowninFig.22c,i.e.,thenthespringforceisgivenby,thenwehave,andnotingthatleadsto,notingthatdoesnotvarywithtime,itisevidentthatand,thenwehave,Itdemonstratesthattheequationofmotionexpressedwithreferencetothestaticequilibriumpositionofthedynamicsystemisnotaffectedbygravityforces.Forthisreason,displacementsinallfuturediscussionswillbereferencedfromthestaticequilibriumposition,CHAPTER2.ANALYSISOFFREEVIBRATION,24ANALYSISOFUNDAMPEDFREEVIBRATIONS,Ithasbeenshownintheprecedingsectionsthattheequationofmotionofasimplespringmasssystemwithdampingcanbeexpressedas,Thesolutionoftheaboveequationwillbeobtainedbyconsideringfirstthehomogeneousformwiththerightsidesetequaltozero,i.e.,Followthethetheoryofdifferentialequationswithconstantcoefficients,thesolutionoftheaboveequationcanbeobtainedstepbystep,Egin-equation,Ifthedampingiszero,i.e.,c=0,thenonehas,Frequencyoffreevibrationofundampedsystemmeasuredinradians/second,CHAPTER2.ANALYSISOFFREEVIBRATION,Theinitialconditionsare,Thenonehas,v(t)canberewritten,inwhich,Thesolutionofv(t)presentsasimpleharmonicmotion.,CHAPTER2.ANALYSISOFFREEVIBRATION,FIGURE2-3Undampedfree-vibrationresponse,Angularvelocity,orCircularfrequency,Cyclicfrequency,usuallyreferredtoasthefrequencyofmotion(cycles/sec),Theperiodofmotion(measuredinseconds),Itsreciprocal,CHAPTER2.ANALYSISOFFREEVIBRATION,26ANALYSISOFDAMPEDFREEVIBRATIONS,Themotionequationis,Egin-equation,Critically-Dampedsystems,Iftheradicaltermintheaboveequationissetequaltozero,itisevidentthat,Define,CriticalDamping,CHAPTER2.ANALYSISOFFREEVIBRATION,Usingtheinitialconditions,Notethatthisfreeresponseofacriticallydampedsystemdoesnotincludeoscillationaboutthezerodeectionposition;insteaditsimplyreturnstozeroasymptoticallyinaccordancewiththeexponentialterm.However,asinglezerodisplacementcrossingwouldoccurifthesignsoftheinitialvelocityanddisplacementweredifferentfromeachother.Averyusefuldenitionofthecriticallydampedconditiondescribedaboveisthatitrepresentsthesmallestamountofdampingforwhichnooscillationoccursinthefreevibrationresponse.,FIGURE2-4Free-vibrationresponsewithcriticaldamping.,CHAPTER2.ANALYSISOFFREEVIBRATION,Undercritically-Dampedsystems,Ifdampingislessthancritical,thatis,ifccc,itisapparentthatthequantityundertheradicalsigninEgin-equationisnegative.Toevaluatethefreevibrationresponseinthiscase,itisconvenienttoexpressdampingintermsofadampingratiowhichistheratioofthegivendampingtothecriticalvalue,Thenwehave,DampingRatio,DampedFrequency,CHAPTER2.ANALYSISOFFREEVIBRATION,Alternatively,thisresponsecanbewrittenintheform,Inwhich,Notethatforlowdampingvalueswhicharetypicalofmostpracticalstructures,20%,thefrequencyratioisnearlyequaltounity.TherelationbetweendampingratioandfrequencyratiomaybedepictedgraphicallyasacircleofunitradiusasshowninthefollowingFigure.,FIGURE2-5Relationshipbetweenfrequencyratioanddampingratio.,CHAPTER2.ANALYSISOFFREEVIBRATION,Itisofinteresttonotethattheunderdampedsystemoscillatesabouttheneutralposition,withaconstantcircularfrequency.,FIGURE2-6Free-vibrationresponseofundercritically-dampedsystem.,CHAPTER2.ANALYSISOFFREEVIBRATION,Thetruedampingcharacteristicsoftypicalstructuralsystemsareverycomplexanddifficulttodefine.However,itiscommonpracticetoexpressthedampingofsuchrealsystemsintermsofequivalentviscousdampingratioswhichshowsimilardecayratesunderfreevibrationconditions.,Consideranytwosuccessivepositivepeaks,oneobtainsthesocalledlogarithmicdecrementofdamping,Forlowvaluesofdampingcanbeapproximatedby,SufficientaccuracyisobtainedbyretainingonlythersttwotermsintheTaylorsseriesexpansionontherighthandside,inwhichcase,CHAPTER2.ANALYSISOFFREEVIBRATION,FIGURE2-7Damping-ratiocorrectionfactor,Thisgraphpermitsonetocorrectthedampingratioobtainedbytheapproximatemethod.,Forlightlydampedsystems,greateraccuracyinevaluatingthedampingratiocanbeobtainedbyconsideringresponsepeakswhichareseveralcyclesapart,saymcycles;then,whichcanbesimpliedforlowdampingtoanapproximaterelation,Whendampedfreevibrationsareobservedexperimentally,aconvenientmethodforestimatingthedampingratioistocountthenumberofcyclesrequiredtogivea50percentreductioninamplitude.,CHAPTER2.ANALYSISOFFREEVIBRATION,FIGURE2-8Dampingratiovs.numberofcyclesrequiredtoreducepeakamplitudeby50percent.,ExampleE21.Aonestorybuildingisidealizedasarigidgirdersupportedbyweightlesscolumns,asshowninFig.E21.Inordertoevaluatethedynamicpropertiesofthisstructure,afreevibrationtestismade,inwhichtheroofsystem(rigidgirder)isdisplacedlaterallybyahydraulicjackandthensuddenlyreleased.Duringthejackingoperation,itisobservedthataforceof9,072kgisrequiredtodisplace

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论