竞赛辅导(静电-1)_第1页
竞赛辅导(静电-1)_第2页
竞赛辅导(静电-1)_第3页
竞赛辅导(静电-1)_第4页
竞赛辅导(静电-1)_第5页
已阅读5页,还剩80页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,静电场,2,基本概念,静电场,场强,电势,电场线,等势面,性质.关系,通量,环流,点电荷,试验电荷,电偶极子,3,基本规律,库仑定律:,高斯定律:,真空中、点电荷,表述、意义、应用,环路定理:,叠加原理:,力的叠加、场强叠加、电势叠加,表述、意义,4,电势分布函数数已知或易求,对称性分析;,选Gauss面;,列方程解方程。,具有对称性,均匀带电球体,无限大均匀带电平面,求,无限长均匀带电圆柱面,均匀带电细圆环轴线,基本方法,5,场强分布函数数已知或易求,均匀带电球面,均匀带电球体,无限大均匀带电平面,求,无限长均匀带电圆柱面,均匀带电细圆环轴线,6,用场强叠加法计算场强的步骤:,1、选微元,写出微元的带电量dq。,2、写出与微元形状相对应的dE,画出dE的方向。,3、根据带电体的形状,建立坐标系,写出dE的各分量式。,4、统一变量,积分,计算出E的各分量。,5、写出场强E的大小和方向。,7,典型场举例:,均匀带电球面,均匀带电球体,8,无限大均匀带电平面,无限长均匀带电圆柱面,均匀带电细圆环轴线,9,1、导体的静电平衡条件。,2、静电平衡时导体上的电荷分布。,3、导体存在时电场的分布问题。,孤立导体静电平衡时,其表面各处的面电荷密度与表面的曲率有关,曲率越大处,面电荷密度也越大。,静电平衡条件,,电荷守恒,,高斯定理。,一、电场中的导体:,10,二、电介质:,电介质:,无极分子电介质,有极分子电介质,电极化:,转向极化,位移极化,介质中的高斯定理,D线与E线的区别,11,三、电容:,并联:,串联:,四、电场的能量:,电容器的能量:,电场的能量密度:,12,稳恒电场:,电流强度:,电流密度:,电动势:,13,1.两个完全相同的导体球,皆带等量的正电荷Q,现使两球互相接近,到一定程度时,则_(1)二球表面都将有正、负两种电荷分布;(2)二球中至少由一个表面上由正、负两种电荷分布;(3)无论接近到什么程度二球表面都不能有负电荷分布;(4)结果不能判断,要视电荷Q的大小而定。(一-二-3),14,解:用反证法。设此相互接近的两导体球为A和B,在达到静电平衡时,都带有异号电荷,则A球上正电荷所发电力就有部分终止于B球的负电荷上,因而A球上电荷处的电势就高于B球上负电荷处的电势,即。可这样一来,作为等势体的B球上的正电荷所发电力线,不仅不可能终止于本身的负电荷上,也不可能终止于A球的负电荷上,而只能终止于无限远处。,15,因若有B上发的电力线终止于A上,则有,于是会导致,即出现了在静电平衡时导体球A不是等势体荒谬结果。这就是说不可能有电力线终止于A球上,也即导体球A上只有正电荷不能有负电荷。又由于A、B两导体完全相同,且皆带等量正电荷,故同理也可用上述方法证明导体B上也只有正电荷而无负电荷。,16,2.有一半径为R的金属球,外面包有一层相对介电常数的均匀电介质壳,壳内、外半径分别为R和2R,介质内均匀分布着电量为的自由电荷,金属球接地,求介质外表面的电势。(一-六),解:设金属球上带电量为q,由高斯定理可求得介质壳内电场强度为,17,在介质外的电场强度,金属球接地,即表示金属球与无限远等电势,有,即:,由上式可求得,介质壳外表面电势为,18,3.设在y-z平面内放置一个边长为a的正六角形线框,其中心位于坐标原点O。现有电量为q的电荷均匀分布在线框上,有人得出在x轴上电场强度的表达式为,其中代表x轴正向上的单位矢量。你能否举出理由说明此结果并不正确。(二-三-2),问答题,3分,19,解:下面两条理由举出一条即可当a0,应得到点电荷场强结果而此式在a0时给出E=0;当x时应得到E按正比于1/x2的规律趋于零(点电荷情形),而此式在x时却给出E按正比于1/x3的规律趋于零(电偶极子情形)。,20,4.有一平行板电容器,其间充有两层均匀介质,厚度分别为l1和l2。设介质是漏电的,电阻率分别为1和2;介质的介电常数分别为1和2。今在电容器两极板间接上电池,设电流达到稳定时极板间电势差U1-U2=U,求两种介质分界面上所带的自由电荷密度。(二-六),解:设介质1中的电场强度为E1,介质2中的电场强度为E2,介质分界面上自由电荷密度为。由高斯定理或直接由电场边界条件可以得出,21,由场强和电势的关系有:,由、解得:,将E1、E2的结果代入得:,由电流的稳定恒条件和欧姆定理的微分形式得出:,22,5.两个半径分别为R1和R2(R2R1)的同心金属球壳,如果外球壳带电量为Q,内球壳接地,则内球壳上带电量是_(三-一-6),(A)0,(B)-Q,解:(C)内球壳接地,其电位应为零。,其中Q为内球壳上带电量。,23,6.平板电容内充满各向异性的均匀介质,设极板间的电场强度为E,电位移矢量为D,介质的极化强度为P对E、D、P的方向可作判断是_(A)D与极板垂直,E和P是否与极板垂直不能确定(B)E与极板垂直,D和P是否与极板垂直不能确定(C)P与极板垂直,E与D是否与极板垂直不能确定(D)D、E、P都与极板垂直(E)D、E、P都与极板不垂直(三-一-10),24,6.平板电容内充满各向异性的均匀介质,设极板间的电场强度为E,电位移矢量为D,介质的极化强度为P对E、D、P的方向可作判断是_解:(B)由于介质均与且介质内无自由电荷,所以介质内也没有极化体电荷,极化电荷只存在于与极板接解的介质表面。极化面电荷与极板上的自由面电荷等效成平面面电荷分布。如果电荷分布是均匀的,则介质内电场也是均匀的,并且垂直于极板,满足两个极板是等位面的条件,由于介质是各向异性的,所以P不一定与E同向,因而D也不一定与E同向,所以可以判断E与极板垂直,但不能判定P、D方向。,25,7.对于一个绝缘导体屏蔽空腔内部的电场和电势可作如下判断_(A)场强不受腔外电荷的影响,但电势要受腔外电荷影响(B)电势不受腔外电荷的影响,但场强要受腔外电荷影响(C)场强和电势都不受腔外电荷的影响(D)场强和电荷都受腔外电荷的影响(三-一-11),解:(A)导体外电荷在导体表面引起感应电荷,腔外电荷与表面感应电荷的总电场在导体壳及腔内为零,所以导体壳层使腔内电场不受腔外电荷影响,为方便选无穷远为电势零点,不难看出腔外电荷及其在导体表面感应的电荷在腔外的电场就改变了导体的电势,从而影响了腔内电势。,26,8.已知两个同心金属球壳的内经分别为a、b,(ba),中间充满电导率为的材料,是随外电场变化的,且=KE,其中K为常数,现将两球壳维持恒定电压,求两球壳间的电流。(四-三-3),解:由j=E,=KE得j=KE2在两金属球壳间作半径为r球面S,则穿过此面的电流,可知,而两金属球的电压,27,9.一半径为R1的球体均匀带正电,体电荷密度为球内半径为R2的小球形空壳为,空腔中心O点与球心O点相距为a。求空腔内P点处的电场强度E,画出空腔内电力线的分布,求空腔中心O处的电势。(四-三-4),解:整个有空腔的带电体可以看成半径为R1的均匀带正电荷(体密度为)的无空腔球体及半径为R2的均匀带负电荷(体密度为-)的球体叠加而成(带负电荷的球体球心在O)。,P为空腔内任一点,令OP=r,OP=r,OO=a,则r=r-a对无空腔的均匀带正电球体,由高斯定理可知,28,式中E1为此无空腔球体产生在P点的场强,S为过P点的以O为球心,r为半径的假想球面,等式左边为E14r2,这样就可以求得,写成矢量式,再考虑均匀带负电荷的球体(处于空腔位置)在P点产生的场强E2,由高斯定理,同样可得,将两者叠加可得有空腔时P点的场强E,29,对于任一点电势,同样应为均匀带电体密度为的大球与均匀带电体密度为-的小球(小球处于空腔位置)分别在该点产生电势的叠加。先求半径为R的均匀带电球体,在球内任一点的电势。已知在球内的场强为,(r0的均匀带电空间,如图所示,有一质量为m,电量为q(0)的点电荷在带电板的边缘自由释放。在仅考虑电场力不考虑其它阻力的情况下,该点电荷运动到中心对称面oo的时间是_(五-二-4),解:,电场为平面对称场,将高斯定理用于图示的柱面得,32,方向沿x轴,点电荷q(0)所受的电力为,此与弹簧振子的受力规律相同,而-q/0与倔强系数k相当。显然点电荷q要在两平行无限大平面内作简谐振动其圆频率为为,周期为,点电荷q从边缘自由释放运动到对称面OO的时间为,33,11.一半径R,带电量Q的导体球在距球心O点d1处放置一已知点电荷q1,今在距球心d2处再放置一点电荷q2,当该点电荷电量为_时可使导体球电势为零(以无穷远处电势为零)(五-二-5),解:由于q1和q2的影响,导体球上的电荷分布不均匀,但总电量不变。导体球是等势体,球上各点的电势与球心O的电势U0相同。,当U0=0时,则,34,12.半径分别为R1与R2的二同心均匀带电半球面现对放置(如图示),二半球面上的电荷密度1与2满足关系1R1=-2R2,(1)试求证小球面对的圆截面S为一等势面,(2)求等势面S上的电势值。(五-四),解:(1)过均匀带电球面的中心O作一截面,将球分成左右两部分,若左半球的电荷在截面上任一点激发的电场强度E左,,由对称性知,右半球的电荷在截面上同一点激发的电场强度E右必如图示。因均匀带电球面内任一点的总电场强度为零。,35,在本题中,左右两个均匀带电的半球在圆截面S上激发的电场强度都垂直于S,当然S上的总电场强度也必垂直于S,故S为一等势面。,S面上的电势为零。,而图中的E左+E右0,显然矛盾,这个矛盾只有当E左和E右都垂直于截面时才能消除,这就断定了均匀带电半球在截面上激发的电场强度必垂直于截面。,(2)既然S为等势面,那S上各点的电势必与O点的电势U0相等,而,36,13.内外半径分别为R1和R2的金属球壳带有电量Q,则球心处的电势为_。若再在球壳腔内绝缘的放置一电量为q0的点电荷,点电荷离球心的距离为r0,则球心处的电势为_;若又在球外离球心的距离为R处,放置一电量为q的点电荷,则球心处的电势为_(五-一-9),解:金属球壳带有电量为Q时,其电量分布在外表面,且均匀分布如图(a)。,37,当球壳腔内绝缘放置q0时,导体球壳电量分布如图(b)利用电势叠加原理则O点电势为q0,-q0,Q+q0产生电势的叠加。,球壳外再放置q,如图c,O点电势加上q作用的结果,,根据均匀带电球面场分布,球体为等势体,故球心O处电势与球面等势,38,14.某质子加速器使每个质子获得动能,很细的质子束射向一个远离加速器、半径为r的金属球,从球心到质子束延长线的垂直距离为.假定质子与金属球相碰后将其电荷全部交给金属球,经足够长时间后,金属球的最高电势(无穷远处电势为零)为(七-一-4)(A)2000V.(B)1500V.(C)1000V.(D)3000V.,39,质子是在带电金属球的保守场中运动,它的能量守恒,即,解:金属球达到最高电势时,质子轨迹刚好与金属球相切,质子所受力为有心力,它对球心O的角动量守恒,即,由(1)、(2)、(3)式联立解得,40,解:接过第k个抽头时,电容器上电压为,电量为.现接第(k+1)个抽头再充电,电量变为,新增电量.,最后电容器上电压为,故总能量为,这次充电电压是,充电过程中这第(k+1)个电池作功,将各次充电作的功相加,得电流所作的总功为,41,16.一平行板电容器中有两层具有一定导电性的电介质A和B,它们的相对介电常数、电导率和厚度分别为、;且,d为平板电容器的两块极板之间的距离.现将此电容器接至电压为V的电源上(与介质A结束的极板接电源正极),设极板面积为S,忽略边缘效应,试求稳定时,(1)电容器所损耗的功率P;(2)电介质A和B中的电场能量和;(3)电介质A和B交界面上的自由电荷面密度和束缚电荷密度.(八-四),解:(1)极间电阻,损耗功率,42,(2)由电介质A、B中电流密度相等,有,解得电场强度,电场能量,(3)由D的高斯定理,,由E的高斯定理,有,43,17.在半径为R的金属球内偏心地挖出一个半径为r的球形空腔。在距空腔中心O点d处放一点电荷q,金属球带电为-q,则O点的电势为(九-一-3)(A)(B)(C)0.(D)因q偏离球心而难以求解,解:据静电平衡条件,金属球内表面带电量为-q,(金属球内表面电荷并不均匀分布),设dS面积上电荷面密度为.,据电势叠加原理:,44,18.静电天平装置如图.一空气平行板电容器两极板面积都是S,相距为d,(d0),B的带电量为Q.由两球心确定的直线记为MN,在MN与球面相交处均开出一个足够小的孔,随小孔挖区的电荷量可不计.将一带负电的质点P静止地放在A球面的左侧某处,假设P被释放后恰能穿经三个小孔越过B球面的球心,试确定开始时P与A球面球心的距离x。(十一-三-15),49,解:P能达到B球心的必要条件是能到达A、B之间的库仑力平衡点S,对力平衡点S有:,如果质点P从静止开始,达到S时,也刚好静止,则P在出发点和S点,应有相同的静电势能,即:,由三式解得:,50,如果P点在B球心处的电势能WB小于在S处的电势能WS,则P点到达B球心时将具有一定的动能,可以越过B球球心。,因RBd,故有即WB、=、)。(十二-一-4),解:带电导体的静电场能量:,对边长为2a的立方体,处处有ra,而总量等于Q的电荷不可能只分布在立方体与球相切的四个切点上,故必有U10U20,即W10)的自由电荷,在板外两侧分别充有电常数为1与2的电介质,1)求板内外的电场分布;2)板外的A点与B点分别距左右两板壁为l,求电势差UAB.(十三-二-11),以MM作底面作垂直板面的高斯面,求得电位移矢量与电场度:,解:假设板内存在一E=D=0的平面MM距左侧面为d1距右侧面为d2,根据对称性,E,D的方向垂直板面,,58,因板左侧至A点的电势差与板右侧至B点的电势差相等,所以A点与B点的电势差仅需计算板左侧至板右侧的电势差UAB,即,(方向由左指向右),E1=-E2,得d1/1=d2/2,与d1+d2=b联立得:,59,28.有两个半径分别为5cm和8cm的薄铜球壳同心放置,已知内球壳的电势为2700V,外球壳带电量为8.010-9C,现用导线把两球壳联接在一起,则内球壳电势为V.(真空介电常量0=8.8510-12C2/Nm2)(十四-一-7),解:令内球壳带电量Q,外球壳的电势为u,,用导线把两球壳联接后,电荷全部都跑到外球壳上去了,内外球壳的电势u相等。,60,29.板间距为2d的大平行板电容器水平放置,电容器的右半部分充满相对介电常数为r的固态电介质,左半部分空间的正中位置有一带电小球P,电容器充电后P恰好处于平衡状态,拆去充电电源,将固态电介质快速抽出,略去静电平衡经历的时间,不计带电小球P对电容器极板电荷分布的影响,则P将经t=_时间与电容器的一个极板相碰.(十四-一-8),解:令小球的质量为m,电量为Q.电容器极板的面积为S,电量为Q.初电场强度为E0,末电场强度为E,初电容为C0,末电容为C。欲求t,需求E.,61,抽出电介质后,小球P受的合力为,小球的加速度为:,62,30.一直流电源与一大平行板电容器相连,其中相对介电常数为的固态介质的厚度恰为两极板间距的二分之一,两极板都处于水平位置,假设此时图中带电小球P恰好能处于静止状态.现将电容器中的固态介质块抽去,稳定后试求带电小球P在竖直方向上运动的加速度a的方向和大小.(十六-13),解:P必为负电荷,其电量记为-q,质量记为m,将两极板间距记为2d.,开始时,介质外的场强记为E1,有,抽去介质后,场强记为E2,有,63,开始时P受力平衡,有,P的加速度向下,有,抽掉介质后,P受的合力向下,有,64,解:P1、P2、P3、P4各点的电势分别为,65,电场对P1P2轴呈旋转对称性,故将圆上各点的电场绕P1P2轴旋转便是球面上的电场,因圆上各点的场强皆不为零,故球面上各点的场强也必皆不为零,显然,第三空的答案为“否”,第四空的答案为“是”。,66,32.半径为r的金属球远离其他物体,通过理想细导线和电阻为R的电阻器与大地连接。电子束从远处以速度v射向金属球面,稳定后每秒钟落到球上的电子数为n,不计电子的重力势能,试求金属球每秒钟自身释放的热量Q和金属球上的电量q.(电子质量记为m,电子电荷量绝对值记为e)(十五-16),解:稳定后流经电阻R的电流为I=neR上的损耗功率为P=I2R=n2e2R单位时间n个电子带给金属球的动能为Ek=nmv2/2金属球自身释放的热量便为Q=Ek-P=n(mv2/2-ne2R)金属球的电势为U=-IR=-neRU与球面电荷q的关系为U=q/40r即得q=-40rneR,67,讨论:仅当电子的动能能够克服球的斥力所作的功,电子才会落到球上,这要求mv2/2-eU即有nmv2/2e2R事实上从热量的表达式也可得到Q0的条件为上述不等式,如果nmv2/2e2R,球电势U的绝对值将增大,球上电荷对外部电子的排斥将增大,落到球上的电子数将会减少,直到n=mv2/2e2R为止。,68,解:,69,34.半径为R的半球面A的球心O位于O-z轴上距O点R处,半球面横截面与O-xy面平行,坐标原点O处有一电量为q的点电荷,则半球面A的电通量.(十七-7),解:以为半径作一球面,它被半径为R的半球面截下一球帽,球帽的高度为,球帽的面积为:,球帽对点电荷q张的立体角为:,已知点电荷q在立体角内的电通量为,故在球帽上的电通量为:,70,35.近代量子量子理论认为,电子在核外的位置虽然是不确定的,但在给定的量子态下,位置的概率分布是确定的,据此,可以将氢原子基态的电子模型化为电荷连续分布的球对称电子云,电荷密度为,总电量为_,氢原子在距中心r=a0处的电场强度方向_,其绝对值为_.参考公式:,qe为电子电量绝对值,按照这一模型,在半径r=a0的球体内电子云,(十八-5),71,解:在半径r=a0的球内,电子云的总电量为,72,将高斯定理应用于r=a0的球面上得,氢原子核的电量为qe,半径为a0的球面包围的电量与球面内的电子云的电量之和为正值,因此该球面上的电场强度E的方向沿径向朝外。,73,36.在每边长为a的正六边形各顶点处有固定的点电荷,它们的电量相间为Q或-Q。(1)试求因点电荷间静电作用而使系统具有的电势能W,(2)若用外力将其中相邻的两个点电荷一起(即始终保持它们的间距不变)缓慢的移动到无穷远处,其余固定的点电荷位置不变,试求外力做功量A。(十八-12),解:其他点电荷在Q处的电势为,74,同理,其它点电荷在-Q处的电势为,系统的电势能为:,(2)用功能原理知,外力做的功应等于系统电势能的增量,系统的初态如图1所示;把图1中相邻的两个点电荷移动到无穷远处,便是末态,系统的初电势能便是上面的W,下面分析系统的末电势能。图2中2、3、4号点电荷处的电势为,75,1、4、3号点电荷在2号点电荷处的电势为,2、1、4号点电荷在3号点电荷处的电势为,1、2、3号点电荷在4号点电荷处的电势为,76,图3中两个点电荷的电势能为,外力所做的功为,图2中这四个点电荷的电势能为,77,在q从B点再移动到无穷远处的全过程中,q受的电力qE始终与位移dr同向,故电力做功为:,37.电量为q的实验电荷在电量为Q的静止点电荷周围电场中,沿半径R的四分之三圆轨道由A点移动到B点的全过程中,电场力做功为_,从B再移动到无穷远处的全过程中,电场力做功为_.(十九-7),解:在q沿圆形轨道从A点移动到B点的全过程中,,q受的电力qE,始终与路径垂直,故电力做功为零。,78,38.电荷Q均匀地分布在半径为R的球面上,与球心

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论