




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,利用直接积分法求出的不定积分是很有限的.,一.凑微分法,例计算,分析:此不定积分的被积函数是复合函数,在积分表中查不到.,5.3基本积分法,为了求出更多函数的不定积分,下面建立一些有效地积分法.,这是因为被积函数cos2x的变量是“2x”,与积分变量“x”不同.,但如果能把被积表达式改变一下,使得被积函数的变量与,积分变量变得相同,那么就可用公式,求出此不定积分.,(u是x的函数),2,注:这种方法的实质是当被积函数为复合函数时,可采用,恒等变形将原来的微分dx凑成新的微分d(x),(可不必换元),使原积分变成一个可直接用积分公式来计算.,这种方法称为凑微分法.,其理论依据为,3,定理4,证利用不定积分的定义及复合函数的求导法则即可.,注1.定理4中,若u为自变量时,当然有,当u换为(x)时,就有,成立.,不定积分的这一性质称为积分形式的不变性.,注2.凑微分法的关键是“凑”,凑的目的是把被积函数的,中间变量变得与积分变量相同.即,成立.,4,(1)根据被积函数是复合函数的特点和基本积分公式的形式,依据恒等变形的原则,把dx凑成d(x).如,(2)把被积函数中的某一因子与dx凑成一个新的微分d(x).如,“凑微分”的方法有:,方法1较简单,而方法2则需一定的技巧,请同学们务必记牢以下常见的凑微分公式!,5,6,例8求下列各式的不定积分,结论1:,7,8,例9求下列各式的不定积分,结论2:,9,同理可得,例10求下列各式的不定积分,10,结论3:,11,或原式,同理可得,12,例11求下列各式的不定积分,同理可得,结论4:,一般地,对形如,这样的不定积分,13,当n为偶数时应先降次后再积分;当n为奇数时应先凑微分再积分;,一般地,对形如,这样的不定积分,若nm,且一奇一偶时,则应凑奇次幂的三角函数;,若同为偶,则化为,14,对形如这样的不定积分应先积化和差后再积分.,15,课堂练习:求下列各式,16,17,注:对于同一个不定积分,采用的方法不同,有时得到的原函数的表达式就完全不同,但这些不同的表达式之间仅相差一个常数.如,法一:,法二:,法三:,18,二.换元法,注:用直接积分和凑微分法是不易计算此积分的.但作变换,从而,注:这种经过适当选择变量代换x=(t)将积分,求出此积分后回代t.称此方法为换元积分法.,化为积分,19,定理5设函数(x)连续,x=(t)单调可微,且,而,证明,即,只是在此方法中要注意两个问题:,1.函数的原函数存在.,2.要求代换式x=(t)的反函数存在且唯一.,则,20,注1:换元积分法是先换元,再积分,最后回代.这与凑微分法(先凑后换元)不一样.,注2:本节利用换元积分法来求解被积函数为无理函数的不定积分.,换元的目的是将无理函数的不定积分转换为有理函数的积分.,分两类讲:,1.根号里是一次式的,即,2.根号里是二次式的,即,主要讲,1.被积函数含有的因子时,可令,例13求下列各式,化简函数后再积分.,21,22,23,但在具体求解时要根据被积函数所含二次根式的不同情况作不同的三角代换,作法如下:,2.被积函数含有的因子时,可作三角变换,利用三角函数恒等式使二次根式有理化.,24,例14求下列各式,25,t,a,x,如图,26,t,a,x,如图,27,t,a,x,28,3.倒代换当被积函数的分母的次数与分子的次数之差大于1时,利用倒代换可消去被积函数分母中的变量因子x.,例15求,29,例16求,法一:三角代换令,法二:根式代换令,法三:凑微分法,原式=,原式=,t,x,1,30,法四:倒代换令,解由题意知,则,例17(1)设函数(x)的一个原函数是arctanx,求不定积分,31,(2)若己知,求:,32,通过上述几种积分方法的学习,可将以下几个公式补充在基本积分表里:,33,34,定理5设函数u=u(x)及v=v(x)具有连续的导数,则,三.分部积分法,直接积分和换元积分法可以解决大量的不定积分的计算问,题;但对形如,等类型的不定积分,采用这两种方法却无法.换元积分法是在复合函数求导法则的基础上得到的,下面利用两个函数乘积的求导法则来推得,分部积分法.,证由d(uv)=vdu+udv,得udv=d(uv)vdu,对此式两边同时求不定积分,得,35,而不定积分易于计算,则可采用分部积分公式,使计算大为简化.,注1:不定积分不易计算,例15求,解(1)设u=lnx,dv=dx,则v=x,由分部积分公式得,36,(2).要比容易积出.,一般按“反对幂指三”的顺序,后者先凑入的方法确定u和v.,注2:分部积分法是基本积分法之一,常用于被积函数是两种不同类型函数乘积的积分,这类积分在具体计算过程中,如何正确地选定u和v却显得非常重要.一般说来要考虑以下两点:,(1).V要容易求得;,例18求,37,比原积分更难积出.,例19求下列不定积分,否则若,38,39,练习:,40,例20求,这是一个关于的方程,移项并两边同除以2,得,注:有些不定积分需要将积分的几
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健身场馆智能化运维师笔试试题及答案
- 2025年悬架系统减震元件项目合作计划书
- 2025年青岛西海岸新区教育和体育系统专项招聘公费师范生考试试题【答案】
- 2025年湖南邵阳北塔区区外选调教师考试笔试试题【答案】
- 2025年射频同轴电缆组件项目建议书
- 2025年ITO靶材项目建议书
- 小学科学教科版六年级上册全册课课练(含答案)(2023秋)
- 2025年自体血回输装置项目建议书
- 关于2025财务部门述职报告范文
- 2025年严以律己心得体会范文
- 2025年初中劳动教师招聘考试试卷(附答案) 三套
- 银行电信诈骗培训课件
- 烧结工艺培训课件
- 2025年4月自考00841第二外语(法语)试题
- 水表安装培训课件下载
- 国有企业招标培训课件
- 2025年甘肃省高考物理试卷(含答案解析)
- GB/T 45309-2025企业采购物资分类编码指南
- 23G409先张法预应力混凝土管桩
- 三年级下册口算天天100题(A4打印版)
- 犟龟 完整版课件
评论
0/150
提交评论