免费预览已结束,剩余43页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一篇古典线性回归模型,CHAPTERONECLASSICALTWO-VARIABLELINEARREGRESSIONMODEL,Twovariable:onedependentvariableonlyoneexplanatoryvarialbeLinear:Yislinearfunctionofparameters.,IMPORTANTdifferentiation1、correlation:determinatestochastic(no-determinate)相关关系:确定性非确定性2、Correlationandcausality相关关系与因果关系3、Linearity:linearityinthevariablelinearityintheparameters线性:变量线性参数线性,1.1Two-variablelinearregressionmodel,Population:asetofallpossibleoutcomesofarandomvariableSubpopulation:1.1.1populationregressionfunctionandpopulationregressionlinePRF:Yt=0+1Xt+utstochasticE(YtXt)=0+1XtdeterminateYt=E(YtXt)+utSEET.F2.1,X:explanatory,independentvariable,fixed-valuevariableY:dependentvariable,randomvariable,:regressioncoefficientsU:disturbanceorerrorterm,isarandomvariableThetaskofregressionistoestimatethePDF,thatis,toestimatethevalueofunknown,onthebasisofobservationsonYandX。,errortermustandsfortheaggregateeffectofallfactorswhichareexcludedfrommodelbutindeedaffectY:1、variablesexcludedfrommodelwitheffectonYvaguenessoftheory,negligibleeffect,noavailablityofdata2、intrinsicrandomofhumanbeingsbehavoir3、measurementerror4、errorofmodelforms,1.1.2sampleregressionfunctionandsampleregressionline(f2.4,t2.4,t2.5)SRFSeef2.5,ThetaskofregressionistoestimatethePDFonthesampleinformationofYandX,PrimaryobjectiveinregressionanalysisistoestimatethePRFonthebasisoftheSRF,oronthesampleinformationofYandX,buttheestimationofthePRFbasedontheSRFisatbestanapproximation。ThenextquestionishowtheSRFshouldbeconstitutedascloseaspossibletothePRFeventhoughweneverknowwhatisthetruePRF。Methodofestimation:Ordinaryleastsquare:最小二乘法Maximumlikelyhood:最大似然法,1.1.2themeaningofthetermlinear,LinearityinvariablesLinearityinparametersconditionalmeansofYislinearfunctionofparameters.,1.2estimationmethodordinaryleastsquare(OLS),Now,theandPRFisunknown,ourtaskinregressionanalysisistoestimatethePRFonthebasisoftheSRF,oronthesampleinformationofYandX,buttheestimationofthePRFbasedontheSRFisatbestanapproximation。WeassumethattheclosertheSRFistoasetofsampledataonYandX,thebettertheSRFfitsthePRF.,Scatter-graph,Y0X,PRF:E(Yi)=0+1Xi,Enlargedlocalarea,actual,estimate,residual,fundamentalthoughtofOLS:tomakeSRFascloseaspossibletoPRF,theresidualofeverypointshouldbeassmallaspossibleHowtochosetomakethesumofsquaredresidualsassmallaspossible,?,Criterionofminimizingthesumofsquaredresiduals(Thesumofsquaredresidualsisafunctionofestimatorofparameters.),1.3CLRMsAssumption,CLRM:classicallinearregressionmodel1、Modelislinearinparameters,Xisfixed-value2、ZeromeanvalueofdisturbanceuiE(ui|Xi)=0ItmeansthatthesefactorexcludedfromthemodeldontsystematicallyaffectthemeanvalueofY.,3、Homoscedasticityorequalvarianceofui(thevarianceofuiisthesameforallobservation.)Var(ui|Xi)=Eui-E(ui|Xi)2=E(ui)2=2Heteroscedasticity:differentvarianceofui,varianceofuivarieswithX.,Heteroscedasticity:differentvarianceofui,varianceofuivarieswithX.Var(ui|Xi)=Eui-E(ui|Xi)2=E(ui)2=i2,ConditionaldistributionofDisturbanceui,4、Noautocorrelationbetweenthedisturbances,namely,noserialcorrelation。Cov(ui,uj|Xi,Xj)=Eui-E(ui)|Xiuj-E(uj)|Xj=E(ui|Xi)(uj|Xj)=0ijYonlydependsonXandcurrentuwithoutrelationtootherus.,Positiveserialcorrelation,+ui,+ui,-ui,-ui,Negativeserialcorrelation,+ui,+ui,-ui,-ui,Zerocorrelation,+ui,+ui,-ui,-ui,5、ZerocovariancebetweenuiandXiBecauseXisfixedvalueanduisrandomvariable,thisassumptionissatisfiedautomatically.ThisassumptionguaranteethattheeffectofXanduonYcanbeseparatedeasily.,6、thenumberofobservationsnisgreaterthanthenumberofparameterstobeestimated。,1.4statisticalpropertiesofOLSestimators,Giventheassumptionsoftheclassicallinearregressionmodel,theestimatorsofOLSpossessidealoroptimumproperties:Best,Linear,unbiasedestimators(blue)Guass-Markovtheorem,linearity,arelinearfunctionsofYiorui.Becausethelaterarenormalrandomvariable,theestimatorofparametersarenormalrandomvariables,UNBIASEDtheexpectedvalueofestimatorofparametersareequaltoitstruevalue。,Minimumvarianceorbest,theestimatorofOLShasminimumvarianceintheclassofallsuchlinearunbiasedestimator,namely,efficientestimatorInstatistic,theprecisionorreliabilityofestimateismeasuredbyitsvarianceorstandarderror.ThesmallertheSE,thebettertheestimate,最小二乘估计量和的方差,Becausefollownormaldistribution,then,isvarianceoferrorterm,附:OLS估计量的其他性质,1.5THECOEFFICIENTOFDETERMINATION,Thecoefficientofdeterminationisameasureof“goodnessoffit”,indicateshow“well”thesampleregressionlinefitsthedata.1.5.1variationanalysis,istotalvariationaboutobservationfromthesamplemeans,isthepartthatcanbeexplainedbyexplanatoryvariable,istheresidualpartthatcantbeexplainedbymodel.,Totalsumofsquare,explainedsumofsquare,residualsumofsquare,ESSstandsforthepartofTSSthatcanbeexplainedbyRegression,so:ThegreaterESS,thesmallerRSS,thebetterSRFfitsthedata,1.5.2goodnessoffit(coefficientofdetermination),WedefinethegoodnessoffitR2asfollowing:,R2iscalledgoodnessoffitorcoefficientofdetermination。,将RSSTSSESS代入上式可得:,Wehavetheconclusion:,TheGreaterR2,thecloserR2to1,thebetterSRFfitsampledata,1.5.3correlationcoefficient(相关系数)Correlationcoefficientquantitivelymeasuresthelinearcorrelationbetweentwovariables,denotedasr,Property:(1)randhassamesign(2)r:-1r1r=1,variableXandYareper
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 空调ODM合同协议书
- 电工承包学校合同范本
- 瓷砖美缝装修合同范本
- 石材年度购销合同范本
- 煤层气合同转让协议书
- 电气火灾报警合同范本
- 私人医院采购合同范本
- 电力负荷控制员-维修电工考试历年真题摘选带答案(5套)
- 2025年电商基础试题及答案
- 2025年移动合同管理试题及答案
- 血栓闭塞性脉管炎护理查房讲课件
- 人工智能在临床麻醉中的应用-刘进教授研究进展
- 飞行体验游旅行合同
- 2024年国网陕西省电力有限公司高校毕业生招聘(第一批)统一安排笔试参考题库附带答案详解
- 2025年CSCO胰腺癌诊疗指南解读
- 2024年昆山农村商业银行招聘笔试真题
- 2025年四川省自然资源投资集团有限责任公司招聘笔试参考题库附带答案详解
- 展会活动疫情防控措施及应急预案
- 安全经验分享:中石油触电事故安全经验分享
- 南京市2024-2025学年高二上学期期中学情调研测试语文试卷及答案
- 全国导游基础知识-第六章-中国古典园林建筑
评论
0/150
提交评论