




免费预览已结束,剩余43页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一篇古典线性回归模型,CHAPTERONECLASSICALTWO-VARIABLELINEARREGRESSIONMODEL,Twovariable:onedependentvariableonlyoneexplanatoryvarialbeLinear:Yislinearfunctionofparameters.,IMPORTANTdifferentiation1、correlation:determinatestochastic(no-determinate)相关关系:确定性非确定性2、Correlationandcausality相关关系与因果关系3、Linearity:linearityinthevariablelinearityintheparameters线性:变量线性参数线性,1.1Two-variablelinearregressionmodel,Population:asetofallpossibleoutcomesofarandomvariableSubpopulation:1.1.1populationregressionfunctionandpopulationregressionlinePRF:Yt=0+1Xt+utstochasticE(YtXt)=0+1XtdeterminateYt=E(YtXt)+utSEET.F2.1,X:explanatory,independentvariable,fixed-valuevariableY:dependentvariable,randomvariable,:regressioncoefficientsU:disturbanceorerrorterm,isarandomvariableThetaskofregressionistoestimatethePDF,thatis,toestimatethevalueofunknown,onthebasisofobservationsonYandX。,errortermustandsfortheaggregateeffectofallfactorswhichareexcludedfrommodelbutindeedaffectY:1、variablesexcludedfrommodelwitheffectonYvaguenessoftheory,negligibleeffect,noavailablityofdata2、intrinsicrandomofhumanbeingsbehavoir3、measurementerror4、errorofmodelforms,1.1.2sampleregressionfunctionandsampleregressionline(f2.4,t2.4,t2.5)SRFSeef2.5,ThetaskofregressionistoestimatethePDFonthesampleinformationofYandX,PrimaryobjectiveinregressionanalysisistoestimatethePRFonthebasisoftheSRF,oronthesampleinformationofYandX,buttheestimationofthePRFbasedontheSRFisatbestanapproximation。ThenextquestionishowtheSRFshouldbeconstitutedascloseaspossibletothePRFeventhoughweneverknowwhatisthetruePRF。Methodofestimation:Ordinaryleastsquare:最小二乘法Maximumlikelyhood:最大似然法,1.1.2themeaningofthetermlinear,LinearityinvariablesLinearityinparametersconditionalmeansofYislinearfunctionofparameters.,1.2estimationmethodordinaryleastsquare(OLS),Now,theandPRFisunknown,ourtaskinregressionanalysisistoestimatethePRFonthebasisoftheSRF,oronthesampleinformationofYandX,buttheestimationofthePRFbasedontheSRFisatbestanapproximation。WeassumethattheclosertheSRFistoasetofsampledataonYandX,thebettertheSRFfitsthePRF.,Scatter-graph,Y0X,PRF:E(Yi)=0+1Xi,Enlargedlocalarea,actual,estimate,residual,fundamentalthoughtofOLS:tomakeSRFascloseaspossibletoPRF,theresidualofeverypointshouldbeassmallaspossibleHowtochosetomakethesumofsquaredresidualsassmallaspossible,?,Criterionofminimizingthesumofsquaredresiduals(Thesumofsquaredresidualsisafunctionofestimatorofparameters.),1.3CLRMsAssumption,CLRM:classicallinearregressionmodel1、Modelislinearinparameters,Xisfixed-value2、ZeromeanvalueofdisturbanceuiE(ui|Xi)=0ItmeansthatthesefactorexcludedfromthemodeldontsystematicallyaffectthemeanvalueofY.,3、Homoscedasticityorequalvarianceofui(thevarianceofuiisthesameforallobservation.)Var(ui|Xi)=Eui-E(ui|Xi)2=E(ui)2=2Heteroscedasticity:differentvarianceofui,varianceofuivarieswithX.,Heteroscedasticity:differentvarianceofui,varianceofuivarieswithX.Var(ui|Xi)=Eui-E(ui|Xi)2=E(ui)2=i2,ConditionaldistributionofDisturbanceui,4、Noautocorrelationbetweenthedisturbances,namely,noserialcorrelation。Cov(ui,uj|Xi,Xj)=Eui-E(ui)|Xiuj-E(uj)|Xj=E(ui|Xi)(uj|Xj)=0ijYonlydependsonXandcurrentuwithoutrelationtootherus.,Positiveserialcorrelation,+ui,+ui,-ui,-ui,Negativeserialcorrelation,+ui,+ui,-ui,-ui,Zerocorrelation,+ui,+ui,-ui,-ui,5、ZerocovariancebetweenuiandXiBecauseXisfixedvalueanduisrandomvariable,thisassumptionissatisfiedautomatically.ThisassumptionguaranteethattheeffectofXanduonYcanbeseparatedeasily.,6、thenumberofobservationsnisgreaterthanthenumberofparameterstobeestimated。,1.4statisticalpropertiesofOLSestimators,Giventheassumptionsoftheclassicallinearregressionmodel,theestimatorsofOLSpossessidealoroptimumproperties:Best,Linear,unbiasedestimators(blue)Guass-Markovtheorem,linearity,arelinearfunctionsofYiorui.Becausethelaterarenormalrandomvariable,theestimatorofparametersarenormalrandomvariables,UNBIASEDtheexpectedvalueofestimatorofparametersareequaltoitstruevalue。,Minimumvarianceorbest,theestimatorofOLShasminimumvarianceintheclassofallsuchlinearunbiasedestimator,namely,efficientestimatorInstatistic,theprecisionorreliabilityofestimateismeasuredbyitsvarianceorstandarderror.ThesmallertheSE,thebettertheestimate,最小二乘估计量和的方差,Becausefollownormaldistribution,then,isvarianceoferrorterm,附:OLS估计量的其他性质,1.5THECOEFFICIENTOFDETERMINATION,Thecoefficientofdeterminationisameasureof“goodnessoffit”,indicateshow“well”thesampleregressionlinefitsthedata.1.5.1variationanalysis,istotalvariationaboutobservationfromthesamplemeans,isthepartthatcanbeexplainedbyexplanatoryvariable,istheresidualpartthatcantbeexplainedbymodel.,Totalsumofsquare,explainedsumofsquare,residualsumofsquare,ESSstandsforthepartofTSSthatcanbeexplainedbyRegression,so:ThegreaterESS,thesmallerRSS,thebetterSRFfitsthedata,1.5.2goodnessoffit(coefficientofdetermination),WedefinethegoodnessoffitR2asfollowing:,R2iscalledgoodnessoffitorcoefficientofdetermination。,将RSSTSSESS代入上式可得:,Wehavetheconclusion:,TheGreaterR2,thecloserR2to1,thebetterSRFfitsampledata,1.5.3correlationcoefficient(相关系数)Correlationcoefficientquantitivelymeasuresthelinearcorrelationbetweentwovariables,denotedasr,Property:(1)randhassamesign(2)r:-1r1r=1,variableXandYareper
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铅山县葛仙山景区旅游公路开发建设工程可行性研究报告
- 提高药品生产企业环保达标率
- 技术试题及答案百度
- 防汛课件教学课件
- 2025年中学纪念九一八事变活动方案5篇
- 礼仪服务公司合同付款管理办法
- 智慧管廊运维管理平台
- 防暑降温防护知识培训课件
- 广告策划品牌整合与传播
- 金融工程行业技术规范与标准研究
- 建行考试题目及答案
- Unit 1 第4课时 Section B 1a-2b 导学案-七年级英语上册
- 第3课 团团圆圆过中秋 第1课时(课件)2025-2026学年道德与法治二年级上册统编版
- 辽宁省名校联盟2025年高三9月份联合考试 生物试卷(含答案解析)
- 小学二年级数学上册教材分析教学计划
- 煤矿干部考核管理办法
- 第6课 从小爱科学 第1课时(课件)2025-2026学年道德与法治三年级上册统编版
- (2025秋新修订)人教版三年级数学上册全册教案(教学设计)
- 肺结节CT判读课件
- 2025港口安全知识试题及答案
- 2025年铁路建设工程质量安全监督管理人员考试试题及答案
评论
0/150
提交评论