




已阅读5页,还剩68页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第25讲多边形与平行四边形第26讲矩形,菱形.正方形第27讲梯形,第五单元四边形,第25讲多边形与平行四边形,第25讲多边形与平行四边形,第25讲考点聚焦,1按定义分类:,考点1多边形,首尾顺次,(n2)180,3,第25讲考点聚焦,相等,相等,轴,第25讲考点聚焦,考点2平面图形的镶嵌,形状,大小,平面图形,镶嵌,第25讲考点聚焦,六,四,三,二,四,一,二,二,一,二,第25讲考点聚焦,2m3n4k12,1,2,两,一,一,1,考点3平行四边形的定义与性质,第25讲考点聚焦,平行,相等,相等,平分,考点4平行四边形的判定,第25讲考点聚焦,相等,相等,相等,互相平分,考点5平行四边形的面积,第25讲考点聚焦,相等,第25讲归类示例,类型之一多边形的内角和与外角和,命题角度:1n边形的内角和定理的应用;2n边形的外角和定理的应用,5,解析设该多边形的边数为n,则(n2)1801/3360.解得n5.,例12012德阳已知一个多边形的内角和是外角和的1/3,则这个多边形的边数是_,第25讲归类示例,如果已知n边形的内角和,那么可以求出它的边数n;对于多边形的外角和等于360,应明确两点:(1)多边形的外角和与边数n无关;(2)多边形内角问题转化为外角问题常常有化难为易的效果,类型之二平行四边形的性质,命题角度:1.平行四边形对边的特点;2.平行四边形对角的特点;3.平行四边形对角线的特点,第25讲归类示例,例2如图251,四边形ABCD是平行四边形,P是CD上一点,且AP和BP分别平分DAB和CBA.(1)求APB的度数;(2)如果AD5cm,AP8cm,求APB的周长,图251,第25讲归类示例,平行四边形的性质的应用,主要是利用平行四边形的边与边,角与角及对角线之间的特殊关系进行证明或计算,第25讲归类示例,类型之三平行四边形的判定,例32012泰州如,四边形ABCD中,ADBC,AEAD交BD于点E,CFBC交BD于点F,且AECF.求证:四边形ABCD是平行四边形,解析由垂直得到EADBCF90,根据AAS可证明RtAEDRtCFB,得到ADBC,根据平行四边形的判定即可证明,第25讲归类示例,命题角度:1.从对边判定四边形是平行四边形;2.从对角判定四边形是平行四边形;3.从对角线判定四边形是平行四边形,图252,第25讲归类示例,证明:ADBC,ADBCBD,AEAD,CFBC,EADFCB90.AECF,EADFCB(AAS),ADCB.ADBC,四边形ABCD是平行四边形,第25讲归类示例,判别一个四边形是不是平行四边形,要根据具体条件灵活选择判别方法凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题,第26讲矩形、菱形、正方形,第26讲矩形、菱形、正方形,第26讲考点聚焦,考点1矩形,直角,直,相等,斜边,第26讲考点聚焦,相等,第26讲考点聚焦,考点2菱形,邻边,相等,垂直,一组对角,第26讲考点聚焦,相等,垂直,一半,考点3正方形,第26讲考点聚焦,平行,相等,直角,垂直平分,第26讲考点聚焦,判定正方形的思路图:,考点4中点四边形,第26讲考点聚焦,菱形,矩形,正方形,菱形,菱形,矩形,第26讲归类示例,类型之一矩形的性质及判定的应用,命题角度:1.矩形的性质;2.矩形的判定,例12012六盘水如图261,已知E是ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:ABEFCE;(2)连接AC、BF,若AEC2ABC,求证:四边形ABFC为矩形,图261,第26讲归类示例,解析(1)利用AAS可得出三角形ABE与三角形FCE全等;(2)利用对角线相等的平行四边形为矩形可得出四边形ABFC为矩形,第26讲归类示例,第26讲归类示例,类型之二菱形的性质及判定的应用,命题角度:1.菱形的性质;2.菱形的判定,第26讲归类示例,例22012重庆已知:如图262,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作MECD于点E,12.(1)若CE1,求BC的长;(2)求证:AMDFME.,图262,第26讲归类示例,解析(1)根据菱形的对边平行可得ABCD,可得1ACD,所以ACD2,得CMDM,根据等腰三角形三线合一的性质可得CEDE;(2)证明CEM和CFM全等,得MEMF,延长AB、DF交于点N,然后证明1N,得AMNM,再利用“角角边”证明CDF和BNF全等,得NFDF,最后结合图形NMNFMF即可得证,第26讲归类示例,第26讲归类示例,在证明一个四边形是菱形时,要注意判别的条件是平行四边形还是任意四边形若是任意四边形,则需证四条边都相等;若是平行四边形,则需利用对角线互相垂直或一组邻边相等来证明,第26讲归类示例,类型之三正方形的性质及判定的应用,例32012黄冈如图263,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DECF,连接DF、AE,AE的延长线交DF于点M.求证:AMDF.,解析根据DECF,可得出OEOF,继而证明AOEDOF,得出OAEODF,然后利用等角代换可得出DME90,即可得出结论,第26讲归类示例,命题角度:1.正方形的性质的应用;2.正方形的判定,图263,第26讲归类示例,第26讲归类示例,正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,因此正方形具有这些图形的所有性质;正方形的判定方法有两条道路:(1)先判定四边形是矩形,再判定这个矩形是菱形;(2)先判定四边形是菱形,再判定这个菱形是矩形,类型之四特殊平行四边形的综合应用,例42012娄底如图264,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点(1)求证:MBANDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由,第26讲归类示例,命题角度:1.矩形、菱形、正方形的性质的综合应用;2.矩形、菱形、正方形的关系转化,图264,第26讲归类示例,类型之五中点四边形,例52011邵阳在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE.(1)请判断四边形EFGH的形状,并给予证明;(2)试添加一个条件,使四边形EFGH是菱形(写出你所添加的条件,不要求证明),第26讲归类示例,命题角度:1.对角线相等的四边形的中点四边形;2.对角线互相垂直的四边形的中点四边形,图265,第26讲归类示例,第26讲归类示例,依次连接四边形各边中点所得到的新四边形的形状与原四边形对角线的关系(相等、垂直、相等且垂直)有关,第26讲回归教材,探索正方形中的三角形全等,教材母题人教版八下P104习题T15,如图266,四边形ABCD是正方形点G是BC上的任意一点,DEAG于点E,BFDE,且交AG于点F.求证:AFBFEF.,图266,第26讲回归教材,证明:四边形ABCD是正方形,ADAB,BAD90.DEAG,DEGAED90,ADEDAE90.又BAFDAEBAD90,ADEBAF.BFDE,AFBDEGAED,ABFDAE,BFAE,故AFBFAFAEEF.,点析正方形含有很多相等的边和角,这些是证明全等的有力工具,第26讲回归教材,中考变式,12010红河如图267,在正方形ABCD中,G是BC上的任意一点(G与B、C两点不重合),E、F是AG上的两点(E、F与A、G两点不重合),若AFBFEF,12,请判断线段DE与BF有怎样的位置关系,并证明你的结论,图267,第26讲回归教材,解:根据题目条件可判断DEBF.证明如下:四边形ABCD是正方形,ABAD,BAF290.AFAEEF,又AFBFEF,AEBF.12,ABFDAE(SAS)AFBDEA,BAFADE.ADE2BAF290,AEDBFADEG90.DEBF.,第26讲回归教材,2如图268,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,12,34.(1)证明:ABEDAF;(2)若AGB30,求EF的长,图268,第26讲回归教材,第26讲回归教材,第27讲梯形,第27讲梯形,第27讲考点聚焦,考点1梯形的有关概念,平行,不平行,第27讲考点聚焦,考点2等腰梯形,底角,相等,第27讲考点聚焦,相等,考点3梯形中常用的辅助线,第27讲考点聚焦,第27讲考点聚焦,第27讲归类示例,类型之一梯形的基本概念及性质,命题角度:1.梯形的定义及分类;2.梯形的中位线及有关计算,例12012滨州我们知道“连接三角形两边中点的线段叫做三角形的中位线”,“三角形的中位线平行于三角形的第三边,且等于第三边的一半”类似地,我们把连接梯形两腰中点的线段叫做梯形的中位线如图271,在梯形ABCD中,ADBC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线通过观察、测量,猜想EF和AD,BC有怎样的位置和数量关系?并证明你的结论,图271,第27讲归类示例,解析连接AF并延长交BC的延长线于点G,则ADFGCF,可以证得EF是ABG的中位线,利用三角形的中位线定理即可证得解:结论为:EFADBC,EF0.5(ADBC),第27讲归类示例,梯形问题通常通过添加辅助线将其转化为三角形或特殊四边形来解决常用添加辅助线的方法有:(1)平移一腰;(2)过同一底上的两个顶点作高;(3)平移对角线;(4)延长两腰,第27讲归类示例,类型之二等腰梯形的性质,命题角度:1.等腰梯形两腰的大小关系,两底的位置关系;2.等腰梯形在同一底上的两个角的大小关系;3.等腰梯形的对角线相等的关系,第27讲归类示例,例22012内江如图272,四边形ABCD是梯形,BDAC且BDAC,若AB2,CD4,则S梯形ABCD_.,图272,9,第27讲归类示例,利用等腰梯形的性质不仅可证明两直线平行,而且可证明两边相等或两个角相等,第27讲归类示例,类型之三等腰梯形的判定,例32011茂名如图274,在等腰ABC中,点D、E分别是两腰AC、BC上的点,连接AE、BD相交于点O,12.(1)求证:ODOE;(2)求证:四边形ABED是等腰梯形;(3)若AB3DE,DCE的面积为2,求四边形ABED的面积,第27讲归类示例,命题角度:1.定义法;2.从同一底上的两个角的大小关系来判定梯形是等腰梯形;3.从两条对角线的大小关系来判定梯形是等腰梯形,图274,第27讲归类示例,解析(1)证明ABDBAE(ASA)(2)由(1)得ADBE,再证DEAB即可(3)DCEACB,利用相似三角形面积比等于相似比的平方求得解:(1)证明:ABC是等腰三角形,ACBC,BADABE,又ABBA,21,ABDBAE(ASA),BDAE.又12,OAOB,BDOBAEOA,即ODOE.,第27讲归类示例,第27讲归类示例,证明等腰梯形首先要满足梯形的定义,再证明两腰相等,或同一底上的两角相等,或对角线相等即可,类型之四梯形的综合应用,例42012苏州如图275,在梯形ABCD中,ADBC,A60,动点P从A点出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止已知PAD的面积S(单位:cm2)与点P移动的时间t(单位:s)的函数关系如图所示,则点P从开始移动到停止移动一共用了_s(结果保留根号),第27讲归类示例,命题角度:1.常用辅助线;2.动态几何问题;3.梯形与全等、相似、解直角三角形等知识的综合运用,第27讲归类示例,图275,解析根据图判断出AB、BC的长度,过点B作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 动物致伤考试题及答案
- (正式版)DB15∕T 3363-2024 《绵羊瘤胃微生物储备糖原的测定方法》
- 电建准入考试题及答案
- 党性锻炼考试题及答案
- 大写数字考试题及答案
- 项目委托开发合同及技术成果分享说明
- 业务流程优化分析模板及案例
- 开学第一天的故事周记记录新的开始(15篇)
- 数据报表自动化生成模板
- 特种类高压试验专业课件
- 广东省事业单位公开招聘人员报名表
- 电厂消防系统培训课件
- 广东省广州市越秀区2024-2025学年七年级下学期期末考试英语试卷(含答案无听力音频及原文)
- 四不放过原则培训
- 执法办案培训课件
- 职业中介公司管理制度
- 儿童口腔预防保健知识
- 机扩根管治疗讲课件
- 中医护理知识试题及答案
- JG/T 187-2006建筑门窗用密封胶条
- 2025-2030猫砂盆行业市场发展分析及发展前景与投资研究报告
评论
0/150
提交评论