圆锥曲线第二定义_第1页
圆锥曲线第二定义_第2页
圆锥曲线第二定义_第3页
圆锥曲线第二定义_第4页
圆锥曲线第二定义_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆锥曲线的二个定义(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与|FF|不可忽视。若|FF|,则轨迹是以F,F为端点的两条射线,若|FF|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。比如:已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是 A B C D(答:C);方程表示的曲线是_(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。如已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是_(答:2)一、求焦点弦长例1 过抛物线的焦点F作直线交抛物线于A()、B(),若,求|AB|的长。解:设AB的中点为E,点A、E、B在抛物线准线l:上的射影分别为G、H、M。由第二定义知:。二、求离心率例2 设椭圆=1(ab0)的右焦点为,右准线为l1,若过F1且垂直于x轴的弦的长度等于F1到准线l1的距离,求椭圆的离心率。解:如图,AB是过F1垂直于x轴的弦,为F1到准线l1的距离,ADl1于D,则|AD|=|F1C|,由题意知。由椭圆的第二定义知:三、求点的坐标例3 双曲线的右支上一点P,到左焦点F1与到右焦点F2的距离之比为2:1,求点P的坐标。解:设点P()(),双曲线的左准线为l1:,右准线为l2:,则点P到l1、l2的距离分别为。所以,解得。将其代入原方程,得。因此,点P的坐标为。4、 求焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径,其中表示P到与F所对应的准线的距离。比如:1、点P在椭圆上,它到左焦点的距离是它到右焦点距离的两倍,则点P的横坐标为_(答:);2、抛物线上的两点A、B到焦点的距离和是5,则线段AB的中点到轴的距离为_(答:2);3、椭圆内有一点,F为右焦点,在椭圆上有一点M,使 之值最小,则点M的坐标为_(答:);五、求离心率的范围例4 已知椭圆,分别是左、右焦点,若椭圆上存在点P,使F1PF2=90,求椭圆的离心率e的取值范围。解:设点P(),则由第二定义得,。因为为直角三角形,所以。即解得,由椭圆方程中x的范围知。,解得。五、求最值例5 已知点A(),设点F为椭圆的右焦点,点M为椭圆上一动点,求的最小值,并求此时点M的坐标。解:如图,过点A作右准线l的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论