已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【大高考】2017版高考数学一轮总复习 第8章 立体几何初步 第6节 空间向量的应用高考AB卷 理空间向量及其应用(2016全国,19)如图,菱形ABCD的对角线AC与BD交于点O,AB5,AC6,点E,F分别在AD,CD上,AECF,EF交BD于点H.将DEF沿EF折到DEF的位置.OD.(1)证明:DH平面ABCD;(2)求二面角BDAC的正弦值.(1)证明由已知得ACBD,ADCD.又由AECF得,故ACEF.因此EFHD,从而EFDH.由AB5,AC6得DOBO4.由EFAC得.所以OH1,DHDH3.于是DH2OH2321210DO2,故DHOH.又DHEF,而OHEFH,所以DH平面ABCD.(2)解如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系Hxyz.则H(0,0,0),A(3,1,0),B(0,5,0),C(3,1,0),D(0,0,3),(3,4,0),(6,0,0),(3,1,3).设m(x1,y1,z1)是平面ABD的法向量,则即所以可取m(4,3,5).设n(x2,y2,z2)是平面ACD的法向量,则即所以可取n(0,3,1).于是cosm,n.sinm,n.因此二面角BDAC的正弦值是.空间向量及其应用1.(2015陕西,18)如图1,在直角梯形 ABCD中,ADBC,BAD,ABBC1,AD2,E是AD的中点,O是AC与BE的交点.将ABE沿BE折起到A1BE的位置,如图2.(1)证明:CD平面A1OC;(2)若平面A1BE平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.图1(1)证明在图1中,因为ABBC1,AD2,E是AD的中点,BAD,所以BEAC,即在图2中,BEOA1,BEOC,且A1OOCO,从而BE平面A1OC,又在直角梯形ABCD中,ADBC,BCAD,E为AD中点,所以BC綉ED,所以四边形BCDE为平行四边形,故有CDBE,所以CD平面A1OC.(2)解由已知,平面A1BE平面BCDE,图2又由(1)知,BEOA1,BEOC,所以A1OC为二面角A1BEC的平面角,所以A1OC,如图,以O为原点,建立空间直角坐标系,因为A1BA1EBCED1,BCED,所以B,E,A1,C,得,(,0,0),设平面A1BC的法向量n1(x1,y1,z1),平面A1CD的法向量n2(x2,y2,z2),平面A1BC与平面A1CD夹角为,则得取n1(1,1,1);得取n2(0,1,1),从而cos |cosn1,n2|,即平面A1BC与平面A1CD夹角的余弦值为.2.(2015天津,17)如图,在四棱柱ABCDA1B1C1D1中,侧棱A1A底面ABCD,ABAC,AB1,ACAA12,ADCD,且点M和N分别为B1C和D1D的中点.(1)求证:MN平面ABCD;(2)求二面角D1ACB1的正弦值;(3)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.解如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,2,2),又因为M,N分别为B1C和D1D的中点,得M,N(1,2,1).(1)证明依题意,可得n(0,0,1)为平面ABCD的一个法向量,由此可得n0,又因为直线MN平面ABCD,所以MN平面ABCD.(2)(1,2,2),(2,0,0),设n1(x1,y1,z1)为平面ACD1的法向量,则即不妨设z11,可得n1(0,1,1).设n2(x2,y2,z2)为平面ACB1的法向量,则又(0,1,2),得不妨设z21,可得n2(0,2,1).因此有cosn1,n2,于是sinn1,n2.所以,二面角D1ACB1的正弦值为.(3)依题意,可设,其中0,1,则E(0,2),从而(1,2,1),又n(0,0,1)为平面ABCD的一个法向量,由已知,得cos,n,整理得2430,又因为0,1,解得2,所以,线段A1E的长为2.3.(2013湖北,19)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC平面ABC,E,F分别是PA,PC的中点.(1)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(2)设(1)中的直线l与圆O的另一个交点为D,且点Q满足,记直线PQ与平面ABC所成的角为,异面直线PQ与EF所成的角为,二面角ElC的大小为,求证:sin sin sin .(1)解直线l平面PAC,证明如下:连接EF,因为E,F分别是PA,PC的中点,所以EFAC.又EF平面ABC,且AC平面ABC,所以EF平面ABC.而EF平面BEF,且平面BEF平面ABCl,所以EFl.因为l平面PAC,EF平面PAC,所以直线l平面PAC. (2)证明法一(综合法)如图1,连接BD,由(1)可知交线l即为直线BD,且lAC.因为AB是O的直径,图1所以ACBC,于是lBC,已知PC平面ABC,而l平面ABC,所以PCl.而PCBCC,所以l平面PBC.连接BE,BF,因为BF平面PBC,所以lBF.故CBF就是二面角ElC的平面角,即CBF.由,作DQCP,且DQCP.连接PQ,DF,因为F是CP的中点,CP2PF,所以DQPF,从而四边形DQPF是平行四边形,PQFD.连接CD,因为PC平面ABC,所以CD是FD在平面ABC内的射影,故CDF就是直线PQ与平面ABC所成的角,即CDF.又BD平面PBC,有BDBF,知BDF为锐角,故BDF为异面直线PQ与EF所成的角,即BDF,于是在RtDCF,RtFBD,RtBCF中,分别可得sin ,sin ,sin ,从而sin sin sin ,即sin sin sin .法二(向量法)如图2,由,作DQCP,且DQCP.连接PQ,EF,BE,BF,BD,由(1)可知交线l即为直线BD.图2以点C为原点,向量,所在直线分别为x、y、z轴,建立如图所示的空间直角坐标系,设CAa,CBb,CP2c,则有C(0,0,0),A(a,0,0),B(0,b,0),P(0,0,2c),Q(a,b,c),E,F(0,0,c).于是(a,0,0),(a,b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电气工程公务员考试试题及答案
- 绿色供暖系统方案
- 安置房项目施工方案
- 北京区县公务员军转考试试题及答案
- 老城区排水管网改造工程项目建议书
- 2026年蔬菜种植公司种植经济效益审计管理制度
- 2026年能源加工公司高处作业安全防护管理制度
- 十五五规划纲要深度解读:城市绿色金融创新试点
- 数据要素赋能中小企业:“十五五”普惠价值释放
- 我国慈善捐赠的多元化来源与影响研究报告
- 2025年山东省济南市中考数学真题
- 2025年跨境电商税务合规服务合同协议(2025年)
- 2025年版《义务教育信息科技技术新课程标准》试题与答案
- 2025年(完整)护理三基知识考试必考题库及答案
- 中小学实验教学基本目录(2023 年版)
- 无人机制造工厂建设施工方案
- 2025年下半年扬州大数据集团公开招聘30人备考参考试题及答案解析
- 2025年6月高校英语应用能力A级真题及答案解析
- 重疾险医学知识培训课件
- 广西贵百河联考2025-2026学年高一上学期10月月考语文试卷
- 兄弟套结机KE-430F中文使用说明书
评论
0/150
提交评论