




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020/5/2,1,2梁板式结构分析的有限条法,有限条法(1)板条(2)平面应力条(3)薄壳条(4)连续结构分析高级有限条样条有限条法组合有限条法小结本章参考文献,1968年,由CheungY.K教授创立了结构有限条分析法,并成功应用于简支板的计算随后,Powell和Qgden(1968)将此法应用到板桥的分析中,拉开了有限条法在桥梁结构分析中应用的大门用有限条法分析箱梁桥,连续板、梁结构、加肋板、振动问题、稳定问题等逐步发展起来,CheungY.k.教授在1976年对有限条法在桥梁工程中的应用以及研究成果分别进行了总结在后来的二十多年中,有限条法的应用范围不断拓宽,不仅应用到各种复杂结构的分析中,还在非线性分析方面显示出优势,有限层法、有限棱柱法和样条有限条法也发展起来,并得到广泛应用。有限条法是一种混合法,它具有一般结构法和有限元法的优点。有限条单元结构的组合单元是沿结构纵向分布的“条”,条间纵向用接线连接,由于桥梁的纵向结构和这种“条”式单元基本一致,故采用此法分析时十分有效。,有限条法(1)板条,(a)位移函数在有限板条中,选用条带节线中点的挠度(w)及x向(桥梁的横向)的转角作为位移函数。图示为一简支板式桥的典型有限条。该板条的纵向挠曲形状可采用正弦函数模拟,而挠曲面的横向(xx)截面可用连接若干个多项式函数来模拟。现将位移函数取为,板划分为有限条,常数可用变形协调条件求出。即,得出方程,(b)能量方程,典型有限条,曲率向量,弯矩或扭矩,(c)刚度矩阵,总势能,最小势能原理,(d)荷载向量,为方便求解平衡方程组中的各单元节点未知位移,可将各单元的节点荷载用正弦级数展开。该正弦级数应在板条的方向上展开并和位移函数相似,即,单元的荷载向量,均布荷载,集中荷载,局部均布荷载,(e)其它支承条件的位移函数选取,对于板条来说,选择合适的位移函数非常重要,一般情况下板条的位移函数可写为,式中是由板端边界条件决定的函数。最常用的函数是板振动位移函数,,两端均简支,两端均固结,而是方程1-的解,一端简支另一端固结,而是方程的解,当时,,两端均自由,表达式同情况,当时,等于情况2中的一端固结另一端自由,而是方程的解。当时,,一端简支另一端自由,的表达式同情况,当2时,等于情况的,(2)平面应力条,(a)位移函数,若假定沿板的厚度方向的应力()可略去不计时,如图所示,则应变变形关系,应力应变关系,简支的矩形板边界条件,位移函数,利用条之间的变形协调关系有,应力,应变,(b)刚度矩阵和荷载向量平面应力条的应变能,荷载势能,刚度矩阵,荷载向量,集中力,作用点,线荷载,作用点,仅有均布载作用在整个板条上,(3)薄壳条,(a)刚度矩阵和荷载向量,在分析箱形梁时,用薄壳条比较方便,薄壳条是由板条和平面应力条组合而成。对于两边简支结构,总势能可写为,位移列向量,板条,平面应力条,(b)坐标转换,图为局部坐标和整体坐标的相对位置,图中x,y,z是局部坐标,而是整体坐标,和是重合的,则在节线i处两坐标系下的位移关系为,则有,坐标转换,(4)连续结构分析,对于连梁板或箱梁结构,可以先将中支承全部解除,代以未知反力,那么结构是在外荷载和未知反力共同作用下的简支结构,跨径为两桥台支点之距。而应满足下式,只要联立有限条方程和此式进行求解即可。此法称为柔度法,求解连续结构的刚度法及支点沉降的处理可参见文献,高级有限条,上节所介绍的有限条位移函数,只能使条的横向斜率和位移在节线处(或板边)连续,但条的曲率和弯矩不能满足连续条件,且自由边上的弯矩也不等于零。这个问题可通过下述两种途径来解决:(a)增加节线上的自由度;(b)在条内加入内节线,此即为高级有限条。,(1)曲率连续板条,如图所示,在板条节线处增加一个位移参数横向曲率,这样,板条的横向曲率和弯矩均是连续的,其计算结果将更精确,曲率连续板条,这种板条位移可写为,位移函数的曲率向量,弯矩向量,刚度矩阵,条的荷载向量,对于集载作用在点有,(2)内节线板条,如图所示,在板条内增加一条内节线c,通常可将节线c放在板条中央,这样,位移函数可用5次抛物线表示为,内节线板条,刚度矩阵,载向量计算,对于满荷布均布载有,值得注意的是,此种条元在边界上的曲率亦是不协调的,但其解的精度要高一些。因为内节线与其它条元无法连接,在装配总刚前可用静力凝聚法给出内节线的位移参数,(3)内节线平面应力条,如下图所示,取位移函数为,内节线平面应力条,刚度矩阵,内节线位移参数亦可由静力凝聚法获得,分析箱形梁时,可采用由高级板条和高级平面应力条组合而成的高阶薄壳条,样条有限条法,(1)样条函数,众所周知的三次B样条函数为,函数及其一阶导数、二阶导数曲线如图所示,其节点数值可查有关表为了用样条函数来插值任意连续函数可将分解为节点为的等间距段,且,则在节点上的函数值可表示为,其中待定系数由下式获得,则可得到求解未知系数的线性方程组,有时,为了获得较高的精度,如将集中载作用点和支承点作为节点时,会用到变间距样条函数,变间距三次B样条边数可写为,(2)薄壳样条有限条,由Y.K.Cheung和Fam在1983年提出的用于板桥、加肋板桥和箱梁桥分析的薄壳样条有限条如图所示,薄壳样条有限条,有了位移函数,条刚度矩阵,荷载向量等可按前述有限条法获得,条的位移可表示为,组合有限条法,如图所示的由桥面板、纵梁、横梁和立柱组合而成的桥梁结构,可以采用Puckett和Gutkowski于1983年提出的组合有限条进行分析。组合条的刚度矩可以写为,板条或薄壳条的刚度矩阵;单条纵梁刚度矩阵;单条横梁刚度矩阵;,单条立柱刚度矩阵;组合条刚度矩阵。,将装配成总体刚度阵矩,其求解过程同一般有限条,组合有限条,(1)矩形组合条,矩形组合条如图所示,包括板条或薄壳条、纵梁、横梁和立柱。板条和薄壳条的刚度矩阵已给出。,在组合条中,任意点的位移可写为,附加单元(梁、柱)的刚度矩阵分述如下,(a)纵梁的弯曲刚度矩阵纵梁的弯曲应变能为,梁的抗弯刚度;纵梁的弯曲刚度矩阵,(b)纵梁的扭转刚度矩阵,纵梁的扭转应变能为,纵梁的抗扭刚度;纵梁的扭转刚度矩阵。(c)横梁的弯曲刚度矩阵,横梁的弯曲应变能为,横梁的抗弯刚度;横梁的弯曲刚度矩阵,(d)横梁的扭转刚度矩阵横梁的扭转应变能为,横梁的扭转刚度矩阵,(e)柱的轴向刚度矩阵,立柱的轴向应变能为,横梁的抗扭刚度,(f)柱的弯曲刚度矩阵,立柱的弯曲应变能由两部分组成,分别是立柱的横向转动和纵向转动。横向转动应变能为,纵向转动应变能为,、立柱柱顶的横、纵向抗转动刚度;立柱的横、纵向弯曲刚度矩阵。,获得条中板和所有支承单元的刚度矩阵后,组合条单元刚度矩阵可写为,条中纵梁个数;条中横梁个数;条中立柱个数,(2)矩形B样条组合条,采用薄壳样条有限条时,纵梁、横梁和立柱的应变能分别为,纵梁:,横梁:,立柱:,、纵、横梁重心离板重心之距。应用位移函数,不难得到此种样条组合条的刚度矩阵,小结,有限条法在桥梁结构静力、动力和稳定分析方面得到广泛应用,并取得良好的效果,不仅因为此种方法综合了一般结构解析分析方法和数值分析方法的优点,更重要的是其所采用的单元与桥梁这种狭长结构不谋而合。有限条法自从诞生以来,其发展速度,应用范围不亚于有限元法。在众多国内外学者的大量研究和实践中,提出了有限层法、有限棱柱法、双样条子域法、有限条传递矩阵法等新方法。并扩展应用到斜桥、弯桥。任意形状板桥及材料几何非线性分析等方面。以下就常见的用有限条法分析桥梁结构问题进行讨论。,(1)有限条方法选择,(a)有限条法、有限层法和有限棱柱法有限条法:薄板结构,其中:基本有限条法:仅关心纵向位移和应力的精度;高级有限条法:同时关心纵、横向位移和应力的精度;样条有限条法:有内力矩突变、集中荷载作用时,精度会提高,可分析任意形状板桥。适于因定支承、自由支撑、带有中支承桥、弯桥等。有限层法:等厚度厚板桥,如上图所示,有限层,有限棱柱法:变厚度厚板桥、空心板桥和厚壁箱形梁桥,如图所示。,有限棱柱,空心板,厚壁箱梁,(b)板条、平面应力条和薄壳条,均适于薄板结构,其中板条:板桥承受竖向荷载;单面应力条:是向薄壳条的过渡,在桥梁上无对应结构;薄壳条:薄壁箱梁桥。(2)桥梁结构的有限条模型建立(a)板桥:薄板有限元,高级有限条样条有限条,厚板,空心板。(b)肋梁桥:板面板按薄板分析,按厚板分析(c)箱梁桥:厚壁箱,薄壁箱。可根据要求的精度不同,加密或减少条的数量,但一般情况下,腹板可分为13个条,翼板(在每两腹板间)。可分为25个条。,薄壁箱梁分条,d)节线和条的编号编号将影响刚度矩度的半带宽,合理的编号可减小半带宽,从而节省计算时间,如图所示a优于b,节线和条的编号,本章参考文献1CheungY.K.TheFinintStripMethodintheAnalysisofElasticPlateswithTwoOppositeSimplySupportedends,Proc.Inst.Civ.Eng.,40,1-7,19682CheungY.K.FiniteStripMethodAnalysisofElasticSlabs.Proc.ASCE94(EM6),13651378,19683Powell.C.H.andOgdenD.W.AnalysisofOrthotropicSteelPlateBridgeDecks,Proc.ASCE,95(ST5),909-9224CheungY.K.FinaiteStripMethodinStructuralAnalysisPergamanPress,Oxford,19765LooY.C.andCusensA.R.TheFinitestripMethodinBridgeEngineering,AViewpointPublication,WexhawSprings,Slough,UK,19786CheungM.S.,W.LiandChidiacS.E.FiniteStripAnalysisofBridges,E&FNSPON,19997徐光辉丁汉山双样条子域法分析变截面连续弯箱梁桥土木工程学报,Vol.23,No.4,19908贺拴海、张翔弹性曲板的有限条传递矩阵法分析及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-河北-河北医技工一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-江苏-江苏不动产测绘员四级(中级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西收银员四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西图书资料员五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东铸造工二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广东-广东汽车修理工(技师/高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东土建施工人员一级(高级技师)历年参考题库含答案解析
- 2020-2025年证券从业之金融市场基础知识自测模拟预测题库(名校卷)
- 2025年职业技能鉴定-铁路职业技能鉴定-铁路职业技能鉴定(铁路车站值班员)高级历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-邮政储汇业务员-邮政储汇业务员高级历年参考题库含答案解析(5套)
- 2025年交管12123驾驶证学法减分及驾驶安全理论知识试题库(附含答案)
- 知识产权保护与服务平台创新创业项目商业计划书
- 2025年贵州贵阳市水务环境集团有限公司招聘27人笔试参考题库附带答案详解(10套)
- 消除“艾梅乙”医疗歧视-从我做起
- 小学四年级道德与法治上册教材分析
- 现在完成时——英语公开课课件
- 管片嵌缝及手孔封堵施工方案完整
- WCDMA——特殊场景传播模型应用指导书
- 卓越绩效评价准则实施指南
- 第二版人民币暗记大全
- 兽药经营管理政策解读PPT课件
评论
0/150
提交评论