南方RTK技术应用实例汇总.doc_第1页
南方RTK技术应用实例汇总.doc_第2页
南方RTK技术应用实例汇总.doc_第3页
南方RTK技术应用实例汇总.doc_第4页
南方RTK技术应用实例汇总.doc_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

RTK技术应用实解 作者:刘磊(郑州南方)日期:2006-8-4RTK技术近年来发展比较迅速,它在各种控制测量、地形测图、工程选线及工程放样中应用广泛,与常规仪器相比非常明显地提高了作业效率和作业精度。但在整个GPS应用方面,测量行业始终是一个小分支,测量知识的流通面也非常有限,再加上普通测量员或非测量专业人员普遍对新技术理解不深,在进行GPS测量时,往往会按照培训人员的要求机械化地去接受,这样时间一长就会对整个测量工作效率产生影响,GPS的优越性也不能完全被发挥出来。特别是在RTK即将普及的今天,熟练操作RTK在实际应用中显得尤为重要。 以南方测绘最新款RTK灵锐S82为例,笔者对主要的RTK作业需注意事项作一下介绍。 根据RTK的原理,参考站和流动站直接采集的都为WGS84坐标,参考站一般以一个WGS84坐标作为起始值来发射,实时地计算点位误差并由电台发射出去,流动站同步接收WGS84坐标并通过电台来接收参考站的数据,条件满足后就可达到固定解,流动站就可实时得到高精度的相对于参考站的WGS84三维坐标,这样就保证了参考站与流动站之间的测量精度。如果要符合到已有的已知点上,需要把原坐标系统和现有坐标系统之间的转换参数求出。 在S82应用中,转换参数大概分为校正参数、四参数、七参数和拟合参数,这些参数全部体现在S82的采集手簿即工程之星上。校正参数是一个核心的内容,它是通过一个已知点来校正,求出WGS84坐标系统的坐标值与实际应用坐标值的三维差值,即X、Y、H。校正参数从原理上说参考站每次开机都需要重新校正,如果参考站架设在同一地点,且每次开机发射的WGS84坐标都已经通过设置来固定,那么校正参数就不需要再重新求。工程之星软件可以设置为参考站发射坐标固定,这种方法因局限于参考站每次只能架设在同一个点上,因此很少采用。所以每次开机校正一次是最常用的方法,这种方法参考站可以在已知点上,也可以在未知点上,但每次都需要一个已知点。如果参考站在已知点,那么流动站可以在任何地方输入参考站坐标来校正;参考站在未知点,流动站必需到已知点上输入流动站坐标进行校正。对于参考站在测量中位置不动而偶尔关机的情况(如电瓶电量耗尽),工程之星最近加入了一项自动改正,再次开机时软件会自动提示参考站坐标已变,选择重新计算即可继续使用,不需要再重新校正。可以看到,校正参数只是一个点的三维改正值,它默认了使用点所在的坐标系与WGS84坐标系北方向是一致的,但实际情况并非如此,随着距离的增大RTK测量结果会和已知坐标系产生越来越大的偏移量,误差也会越大,所以采用标准坐标系时这种方法仅限于1km左右的测量范围。当然如果是假定近似直角坐标就没有这种距离限制,因为通常假定的坐标北方向与WGS84方向是一致的。 四参数和七参数并不是一个概念,四参数是同一椭球不同坐标系之间的转换参数,表示为X、Y、A(旋转角)、K(尺度比),七参数是两个不同椭球之间的转换参数,表示为X、Y、Z、K,三个平移、三个旋转和一个尺度参数,是不严密的。四参数和七参数是不能同时使用的,两者只能选其一,那么在具体测量时怎么确定这两种参数是一个关键问题。 RTK直接测量的坐标是属于WGS84坐标系,我们通常用的是国家标准坐标系统,比如1954年北京坐标系,两者并不是一个椭球,那么原则上讲需要七参数才可以实现两个椭球的转换,我们才有可能采集到54坐标。但在不能精确求取七参数的情况下,工程之星是把WGS84的原始经纬度作为北京54的经纬度处理,这样一来就可以通过采集两个或两个以上的北京54已知点来求取四参数。工程之星上提供了两种求取四参数的方法:一是利用控制点坐标库,即在未校正的情况下先采集所有已知点的WGS84坐标,再打开控制点坐标库把相同点在两套坐标系统内的坐标依次输入,软件就会自动计算出四参数并给出点位精度;另一种方法就是利用校正向导的多点校正,多点校正不同于单点校正,单点校正只能在第一个向导点出现时校正,计算出的是上面提到的校正参数,而多点校正则是每个向导点都需进行校正,两个点以上即可求出四参数,并自动启用。 七参数的求解方法一般是靠做控制测量即静态测量。S82静态测量的数据导入平差软件进行处理后,软件会自动求出七参数,在做RTK测量时可以直接输入使用。七参数相对于四参数来说可以认为是更准确、精度更高,有条件的话尽量使用七参数。 拟合参数是指高程拟合参数,在需要高精度的正常高高程值时,用RTK测量必须合理地求解高程拟合面,这样才能满足一般作业要求。GPS静态测量高程最高可以达到三等水准的精度,做RTK时为四等或四等以外,它的前提是必须有高精度的高程拟合面。求拟合参数实际上就是求一个区域高程异常的过程,S82的工程之星提供了计算高程拟合参数的方法,在利用控制点坐标库求四参数时,如果带有高程的已知点个数达到6个或更多,那么软件会另外计算高程拟合参数并自动启用。 以上是求参数的方法,在实际工作中,转换参数是一个很重要的问题,所以一定要正确求取,最好留一些点进行检查,以实时把握参数的精度。具体求参数时主要是对已知点的要求比较多,有以下几个方面: 1、控制点的数量应足够。一般来讲,平面控制应至少三个,高程控制应根据地形地貌条件,数量要求会更多(比如6个或以上)以确保拟合精度要求。 2、控制点的控制范围和分布的合理性。控制范围应以能够覆盖整个工区为原则,一般情况下,相邻控制点之间的距离在3km-5km,所谓分布的合理性主要是指控制点分布的均匀性,当然控制点是越多越好。 3、已知点少时,点位决定精度。如果只有两个点情况下,两已知点距离不应太近,一般情况下作用范围不应超过两点距离的1.5倍;另外两已知点也不应在象限方向上,即不应在东西或南北方向,应存在一定的偏角。 4、控制点精度应统一。用于求参数的控制点应是经过统一平差的点。 有很多用户在没有已知点的情况下一般采用假定坐标,那么这种情况只需假定一个已知点校正即可,任意选坐标系统,注意输入中央子午线时要输入测区范围的平均经度,这样不会产生太大的投影变形,与常规测量仪器方便联测。此种情况一般不应采取全站仪定向方法,因为全站仪定向存有偏差,必须求出四参数才行,而且这种参数一般精度不高。所以,在进行GPS测量时,假定坐标只能取一个。 此外,注意S82的状态及工程之星的文件类型,对用户来讲有很大的帮助。 1、架设S82参考站时,一定要注意电瓶的正负极,先联接电瓶端,检查无误后再联接主机和电台。 2、参考站状态指示。主机上面的指示灯,一般只需看前两个,RTK模式正常工作应为:STA灯1秒间隔闪烁表示,DL灯5秒间隔连续闪烁两次;电台指示灯正常应为:通道正常显示,TX灯1秒间隔闪烁。 3、流动站状态指示。主机上面的指示灯,RTK模式正常工作应为:STA灯1秒间隔闪烁表示,DL灯1秒间隔闪烁;手簿正常工作状态:工程之星常规界面,下方显示点位信息,有点号、坐标、精度及卫星状况,左上角有电台通道(与参考站一致)及信号强度指示条。 以上三点是正常工作的前提,如果测量中间出现问题,要根据状况来判断原因。比如工程之星下方显示无数据,那就表示手簿与流动站没有联接,热启动手簿重新联接即可;通道号没显示或显示与参考站不一致的通道号,用电台设置切换到需要的通道即可。在真正测量时,工程之星提示的状态一定要达到固定解,而且蓝牙不应离流动站太远,正常情况是显示的坐标更新率应1秒1次。 另外,工程之星的作业是以工程文件来管理的,每个工程对应一个文件夹,而其后缀为INI文件,调用工程其实就是调用INI文件;相应的工程里面存有椭球信息、所有参数信息。工程文件夹下面可以建立文件,这些文件其中主要的有DAT文件,是用来存储坐标的。一个测区可以只建一个工程,求出参数后在此工程下面每天可以新建一个文件,测量时利用校正向导求校正参数即可。当然始终用一个工程一个文件也可以,但由于手簿内存有限,文件如果存的点多运行起来速度就会减慢。如果外业测量时求不出校正参数而需要后处理的话,参考站每次开机尽量都用一个新的工程和新的文件来采集,且每次要联测至少一个已知点,在内业处理时可以根据已知点将数据改正过来。 RTK测量技术还有很大发展空间,操作方法会越来越简单,但是要更好的应用RTK技术,还是要测量人员亲身体会其原理及性能,对各种情况做到心中有数,这样才能有效地保证RTK测量精度,提高作业效率。 GPS测量坐标参数转换法 作者:熊波(南方数码)日期:2005-11-11全球定位系统(GPS)使用的是WGS84坐标系统,我国绝大多数使用的是北京54坐标系统(当然还有使用众多的地方坐标系统),所以就存在坐标转换问题。世界范围内较大的OEM板厂家,有的将某些坐标系统和WGS84坐标系统之间的转换参数直接输入OEM主板,这是因为该坐标系统和WGS84坐标系统之间有固定的转换关系。我国1954年北京坐标系(简称BJ54)与WGS84的转换关系尚未被国际GPS生产厂家置入GPS接收机内,是因为我国地域广阔,所以不宜采用事先把某一套转换参数固定(置入)在GPS接收机中。因而不能采用在接收机内自动选择转换参数直接求得所需坐标的方法,只能在软件中采用转换参数的方法。在差分基准台(以下简称差分台)GPS接收机用户自定义条件下,由用户输入BJ54椭球参数和由WGS84至BJ54的转换参数及差分台BJ54的经度、纬度和大地高(GPS天线到平均海水平面高与大地水准面差距之和),同时在移动台(或船台)GPS接收机自定义条件下,由用户输入BJ54椭球参数及坐标转换参数,并在其后处理软件中选择高斯投影方式(或中央子午线变形系数为1的UTM投影)输入中央子午线经度值。这样差分台和移动台同时进行实时坐标转换并通过数传进行差分定位,求得移动台BJ54坐标。另外,可采用强制符合转换法,其方法如下:由于我国各省市自治区尚未在国家GPS网内普遍加密GPS地区网,虽然部分城市已建立GPS网,但尚未与国家网联测,所求的局部地区的坐标转换参数,尚有一定的局限性,因而各地区尚无精确的转换参数可选用,也就无法采用自定义转换参数法和后处理转换法。根据GPS测量的实践和体会,笔者着重进行了在WGS84坐标系中用差分台的BJ54坐标作为GPS坐标系中的强制符合基准值,进行近似转换的可行性和可靠性分析,认为强制符合转换法是一种可行的好方法,其基本做法如下: 在差分台、移动台均选择WGS84坐标系,向差分台接收机输入该台BJ54精确大地坐标(B、L、h),同时在移动台后处理软件中选择高斯投影(中央子午线变形系数为1的UMT投影),差分台使GPS接收机所求点位WGS84坐标与该点的BJ54坐标强制符合比较,使之获得一组强制约束伪距改正数,并通过数传对移动台WGS一84坐标系统中的伪距观测进行修正,获得移动台的BJ54。这种方法在UHF和VHF作用范围内,转换精度并不亚于自定义转换参数法,它可适用于地方坐标系和任一独立直角坐标系。以上是在理论上简单介绍了坐标参数转换方法,下面先列出一个转换图示,再通过归类的方式详细阐述坐标参数转换方法。 一、转换为BJ54平面坐标一般的,椭球之间的转换,理论上应该使用七参数,但是由于任何两个椭球之间的转换都是不严密的,椭球之间的七参数也很难得到,所以实际测量中多使用单点校正的方法,求出GPS主机输出的坐标和实际坐标之间的平移参数。有些情况下,使用单点校正精度不能满足要求,就必须使用两点校正,求出四参数。 有些情况下,由于高程上不是加权平均,而是存在平面拟合,此时使用七参数是一个解决方法,但是要注意七参数的获取方式,并且注意七参数中的三个旋转参数必须是秒级的(因为高程系统和XY 坐标系统存在一定的差异,下面会简单介绍高程处理)。二、转换为平面坐标如果地方坐标和BJ54间只有平移没有旋转,实际测量中使用单点校正的方法,求出GPS主机输出的坐标和实际坐标之间的平移参数。如果地方坐标和BJ54间既有平移又有旋转,使用单点校正不能满足要求,就必须使用两点校正,求出四参数。高程处理的简单介绍从理论上而言,平面坐标XY使用四参数是最精确的方法,高程使用高程拟合是最精确的方法。所以,在参数转换中,用四参数转换平面坐标,用高程拟合的方法转换高程是精度最好的方法。高程拟合分为加权平均、平面拟合和曲面拟合三种。加权平均两个已知点以下即可;三个已知点以上六个已知点以下可以使用平面拟合;六个已知点以上可以使用曲面拟合。山区一级GPS控制网测量实践 作者:陈胜利(安徽省阜阳市测绘院)阅读:1095 次日期:2006-1-10【摘 要】:本文通过对山区一级GPS施测过程的叙述,提出保证精度、减少误差、提高效率的方法。【关键词】:一级GPS控制网;精度;效率 山区地形起伏较大,待定点间通视、近地面大气密度、透明度、折光影响成为以往导线测量、三角测量、高程引测的很大障碍,而网形设计,传算边角观测的各项误差也限制着成果的精度。GPS测量由于全天候、精度高、省费用等鲜明优点,已成为目前测绘单位首选基础控制测量方式。特别相对定位的精度基本上与待定点间构成网形无关以及不需通视等,使得GPS测量具有很大的灵活性。本文着重叙述了在山区施测一级GPS过程,保证精度、减小误差、提高效率的方法。日前我院受瑞安市规划建设局委托,为了满足瑞安市农村村庄规划和建设的需,要施测瑞安市境内50个村约10平方公里1:500比例尺地形图。 该测区处于东经12015至12033范围内,以山区地貌为主,村庄多分布在山岙里且比较分散,相距110公里不等,但多数村庄均有沥青或水泥路可到达。为满足1:500比例尺数字化地形图施测,本测区在四等以上平面控制点基础上,直接布设一级GPS网作为基础控制,原则上每平方公里不少于16个固定点。由1:70000比例尺瑞安市行政区划图可知施测的50个村约分布在500平方公里范围内。 由于以上客观原因,为满足数字化地形图施测以及点位精度,我院决定采用标称精度:水平精度为5mm+1ppm*D,高程精度为10mm+2ppm*D的南方测绘仪器公司四台套北极星9600型GPS测量系统,采用静态相对定位的作业模式施测。一、网形设计 已有资料:测区内有3个1998年同网平差的已知四等控制点,采用1954年北京坐标系参考椭球几何参数,中央子午线经度120。 此控制网施测目的是为了满足进一步加密控制和数字化地形图施测的需要。依据CJJ73-97全球定位系统城市测量技术规程简称规程,考虑到村庄相距较远且多分散在山脚、山岙,原则上每个村庄布设3个点且其中2个点保证通视。计划布设124个未知点,采用点连式作为该网的基本图形。综合误差传播定律、布点构成的网形几何强度,为使GPS网进行约束平差后点位坐标精度的均匀性以及减少尺度比误差影响,对已知等级控制点除纳入整网观测外,也适当构成长边图形。相距已知点较远的未知点、网边缘地区的未知点一般采用边连式,以增加重复基线、非同步图形闭合条件。这样既减少外业工作量、降低成本,又保证网的几何强度,提高网的可靠性指标。二、GPS测量的外业实施 使用南方测绘仪器公司北极星9600型GPS测量系统采用静态相对定位的作业模式施测。因该网设计时相邻距离在10公里内: 1、分析GPS短基线测量的主要误差来源 对于短基线来说,由于基线两端点之间的距离较短,数据处理时采用差分的形式。电离层和对流层对信号的延迟对基线两端点的影响大致相同,星历误差对短基线的两个测站的影响基本相同,均可忽略。因此短基线测量的主要误差来源:多路径误差,天线相位中心位置的偏差,接收机的位置误差,地面起始点的误差,卫星的PDOP值。 2、选点、观测、数据处理 (1)、选择合适站址的目的主要消除GPS信号的传播误差,北极星9600型接收机内置扁平微带有源高增益天线和抑制板已有效抑制截止高度角(通常15)以下反射波,显著削弱多路径误差。但是由于村庄多分散在山脚、山岙,且3、4层建筑物林立,为满足村庄数字测图需要,除依据CJJ73-97全球定位系统城市测量技术规程关于选点的要求外,因客观原因不可避免有部分点选择在山坡或存在障碍现象的。对于周围有高于10障碍物的点必须绘制GPS点的环视图。 (2)、观测 观测时段:基线长度原则上在5公里以内观测45分钟,510公里观测60分钟。采样间隔15秒,高度截止角15。 观测实施:根据近一个月星历预报,选择卫星的PDOP值较小的时段观测同时根据具体点位情况、参考GPS点环视图、基线长度等因素制定观测计划和每天观测表。特别小组成员可根据实地情况建议,由组织协调人员现场有选择增加观测时段长度。 (3)、数据处理 每天观测结束,下载观测数据。按规程、技术设计及时对外业全部资料全面检查和验收,包括:成果是否符合调度命令和规程要求,观测数据质量分析是否符合实际。 采用随机软件进行基线处理,以合格双差固定解作为本次短基线处理的合格解。对于软件未能解算出合格解的基线的处理,可改变解算条件重新解算:改变历元间隔。采集高质量的载波相位观测值是解决周跳问题的根本途径,适当增加采集密度是诊断和修复周跳的重要措施。对基线同步观测时间较短,可缩小历元间隔,让更多的数据参与计算;若基线同步观测时间长,可增加历元间隔,减少含有质量差数据参与计算;若数据周跳较多时,可增加历元间隔,使解算时跳过中断的数据继续解算。根据点位环视图有障碍,可增大高度截止角、减少历元间隔。改变高度截止角。同步观测时间较长,观测卫星较多、GDOP较小,根据点位环视图有障碍,增加高度截止角解算;若同步观测时间短,软件默认解算条件下观测卫星不足,GDOP较大,点位环视条件好时可降低高度截止角解算。禁用无效历元。参考基线解算报表,对于卫星的健康状况恶劣,卫星信号经常失锁,整周模糊度搜索失败,禁用无效历元,同时注意同一时段观测值的数据剔除率小于数据总量的10。顾及时段中信号间断引起的数据剔除、劣质观测数据的发现及剔除、星座变化引起的整周未知参数的增加等,重新解算。 然后对所有解算出合格固定解的基线进行检核:每个时段同步观测数据的检核;重复观测边的检核;同步观测环检核;异步环检核。当发现以上各步检核超过限差,应分析原因,平差处理后单位权中误差一般值为0.05周以下;短基线双差实数解、双差固定解之间的基线向量坐标通常要求其差小于5cm。 (4)、野外返工 对经过检核以及综合分析各种客观因素基础上超限的基线,进行野外返工。由于控制面积大、交通不便等因素应分步考虑返工:无论何种原因造成一个控制点不能与两条合格独立基线相连结,则纳入第二天观测计划,适当调整观测网形补测或重测不少于一条独立基线。对舍弃(在复测基线边长较差、同步环闭合差、独立环闭合差检验中超限的)基线后的独立环所含基线数超过10时;由于点位不符合GPS测量要求而造成一个测站多次重测仍不能满足各项限差技术规定时。在整网观测完后重测基线、有关同步图形或按技术设计要求另增选新点进行重测。三、总结 针对影响山区一级GPS测量的客观因素,认真分析主要误差来源,选择设计合适的网形,经过小组成员的共同协作,参考星历预报,GPS点环视图、基线长度,特别是观测小组成员现场反馈的测站信息,有选择变更观测时段长度甚至待定点位置可有效减弱山区交通、地形给GPS测量带来的不利因素,保证精度的基础上,减少外业工作量、提高效率、降低成本。 我们用的是一个控制点校正,在另一个控制点上检查,主要问题是在校正点附近测量值准确,测得远了就不行了,越远误差越大(最远也没上6公里,但坐标就可差到0.4米,最大差到0.8米,高程0.5米),把基准站架到已知点和未知点都一样!回复:我们不推荐使用单点校正,因为单点校正仅仅有x、y和h的平移值,在两三公里的范围内测得坐标值准确,离已知点越远,误差就会越大。建议您使用两个点计算四参数来进行校正,这样有助于您测得准确的坐标。RTK技术实际应用优劣简析 作者:赵东晨(广州南方)日期:2005-12-26前言RTK测量技术时下风靡全国,主要因为其测量模式和测量速度、精度比以往的测量方式有了很大的变革,下面就其在行业应用的优劣作简要分析。一、RTK技术的测量速度RTK技术的测量速度主要由初始化所需时间决定,初始化所需时间又由RTK技术差别(各种机型有不同的快速解算技术)、接收卫星的数量和质量、RTK数据链传输质量等因素决定,快速解算技术越先进,在一定的高度角下接收到的卫星数量越多、质量越好,RTK数据链传输质量越高,初始化所需时间就越短。在良好的环境条件下,RTK初始化所需时间一般为几十秒;不良环境条件下(尚满足RTK基本工作条件),技术先进的RTK也需要几分钟到十几分钟,其它机型RTK需要几十分钟甚至不能测量。如美国ASHTECH生产的Z-X双频RTK在良好的环境条件下,初始化所需时间为2-10秒,在不良环境条件下,仍能较顺利地进行RTK测量,主要是这种机型拥有先进的Z-跟踪专利技术、快速RTK(INSTANT-RTK)技术和多路径消减专利技术,试验表明,即使测区内有一部分地方环境恶劣,其观测值点位中误差仍在2.41cm以下。南方测绘的9800RTK的初始化时间小于60秒,一般为45秒,而最新的灵锐S80的初始化为15秒左右,所以对于测量要求而言,国产和进口的仪器差别并不是很明显。二、RTK测量成果的质量控制研究表明,RTK确定整周模糊度的可靠性最高为95%, RTK比静态GPS还多出一些误差因素如数据链传输误差等。因此,和GPS静态测量相比,RTK测量更容易出错,必须进行质量控制。质量控制的方法主要有:(1)已知点检核比较法即在布测控制网时用静态GPS或全站仪多测出一些控制点,然后用RTK测出这些控制点的坐标进行比较检核,发现问题即采取措施改正。(2)重测比较法每次初始化成功后,先重测1-2个已测过的RTK点或高精度控制点,确认无误后才进行RTK测量。(3)电台变频实时检测法在测区内建立两个以上基准站,每个基准站采用不同的频率发送改正数据,流动站用变频开关选择性地分别接收每个基准站的改正数据从而得到两个以上解算结果,比较这些结果就可判断其质量高低。以上方法中,最可靠的是已知点检核比较法,但控制点的数量总是有限的,所以没有控制点的地方需要用重测比较法来检验测量成果,电台变频实时检测法的实时性好,但它需具备一定的仪器条件。三、RTK技术优点3.1作业效率高。 在一般的地形地势下,高质量的RTK设站一次即可测完4km半径的测区,大大减少了传统测量所需的控制点数量和测量仪器的“搬站”次数,仅需一人操作,在一般的电磁波环境下几秒钟即得一点坐标,作业速度快,劳动强度低,节省了外业费用,提高了劳动效率。3.2定位精度高,数据安全可靠,没有误差积累。只要满足RTK的基本工作条件,在一定的作业半径范围内(一般为4km),RTK的平面精度和高程精度都能达到厘米级。3.3降低了作业条件要求。RTK技术不要求两点间满足光学通视,只要求满足“电磁波通视”,因此,和传统测量相比,RTK技术受通视条件、能见度、气候、季节等因素的影响和限制较小,在传统测量看来由于地形复杂、地物障碍而造成的难通视地区,只要满足RTK的基本工作条件,它也能轻松地进行快速的高精度定位作业。 3.4RTK作业自动化、集成化程度高,测绘功能强大。RTK可胜任各种测绘内、外业。流动站利用内装式软件控制系统,无需人工干预便可自动实现多种测绘功能,使辅助测量工作极大减少,减少人为误差,保证了作业精度。 3.5操作简便,容易使用,数据处理能力强。只要在设站时进行简单的设置,就可以边走边获得测量结果坐标或进行坐标放样。数据输入、存储、处理、转换和输出能力强,能方便快捷地与计算机、其它测量仪器通信。南方测绘9800、灵锐S80在基准站架设、移动站操作、手簿软件的使用方面都比较简单易学。四、RTK的不足及其解决办法 4.1受卫星状况限制。当卫星系统位置对美国是最佳的时候,世界上有些国家在某一确定的时间段仍然不能很好地被卫星所覆盖,容易产生假值。另外,在高山峡谷深处及密集森林区,城市高楼密布区,卫星信号被遮挡时间较长,使一天中可作业时间受限制。产生假值问题采用RTK测量成果的质量控制方法可以发现。作业时间受限制可由选择作业时间来解决。 4.2天空环境影响。白天中午,受电离层干扰大,共用卫星数少,常接受不到5颗卫星,因而初始化时间长甚至不能初始化,也就无法进行测量。在南宁郊区,我们做过试验,在同样的条件和同样的地点上进行RTK测量,上午11点之前和下午3:30分之后,RTK测量结果准而快,而中午时分,很难进行RTK测量。可见选择作业时段的重要性。4.3数据链传输受干扰和限制、作业半径比标称距离小的问题。RTK数据链传输易受到障碍物如高大山体、高大建筑物和各种高频信号源的干扰,在传输过程中衰减严重,严重影响外业精度和作业半径。在地形起伏高差较大的山区和城镇密楼区数据链传输信号受到限制。另外,当RTK作业半径超过一定距离(一般为几公里,每种机型在不同的环境又各不相同)时,测量结果误差超限,所以RTK的实际作业有效半径比其标称半径要小很多,工程实践和专门研究都证明了这一点。解决这类问题的有效办法是把基准站布设在测区中央的最高点上。4.4初始化能力和所需时间问题。在山区、一般林区、城镇密楼区等地作业时,GPS卫星信号被阻挡机会较多,容易造成失锁,采用RTK作业时有时需要经常重新初始化。这样测量的精度和效率都受影响。解决这类问题的办法主要是选用初始化能力强、所需时间短的RTK机型。4.5高程异常问题。RTK作业模式要求高程的转换必须精确,但我国现有的高程异常图在有些地区,尤其是山区,存在较大误差,在有些地区还是空白,这就使得将GPS大地高程转换至海拔高程的工作变得相当困难,精度也不均匀。 4.6电量不足问题。RTK耗电量较大,需要多个大容量电池、电瓶才能保证连续作业,在电力供应缺乏的偏远作业区受到限制。 4.7精度和稳定性问题。RTK测量的精度和稳定性都不及全站仪,特别是稳定性方面,这是由于RTK较容易受卫星状况、天气状况、数据链传输状况影响的缘故。不同质量的RTK系统,其精度和稳定性差别较大。要解决此类问题,首先要选用精度和稳定性都较好的高质量机种,然后,要在布控制点时多布置一些“多余”控制点,作为RTK测量成果质量控制的检核点。五、RTK的优化布测方法5.1摸清仪器特性。通过在各种条件下反复试验,摸清仪器各种特性,如能否达到标称精度,在各种条件下的测量误差和作业半径,摸清仪器的稳定性和各种条件下的初始化能力及所耗时间等等,以便应用时得心应手。 5.2布控制点。控制点主要布置在制高点上用来设置基准站,以利于接收卫星信号和数据链信号,控制点间距离应小于RTK有效作业半径的2/3倍。为方便对RTK测量成果进行控制检核和避免出现作业盲点,应在测区内环境不良地区增设一些控制点。控制点的选点还要避免无线电干扰和多路径效应,南方测绘的9800天王星RTK、灵锐S80有抑制多路径效应的技术,对于无线电和环境不良区域有相关的技术处理。结束语综上所述,RTK在实际测量过程中有很多优秀的方面,同时也有些技术限制,只有了解了它的劣势所在,才能避其利害,把有益于实际生产的技术带到工程应用中来。高斯投影及其中央子午线的判断一、高斯-克吕格投影1、高斯-克吕格简介高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl Friedrichauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,18571928)于 1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外, 其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。2、高斯-克吕格特性(1)等角投影投影前后的角度相等,但长度和面积有变形;(2)等距投影投影前后的长度相等,但角度和面积有变形;(3)等积投影投影前后的面积相等,但角度和长度有变形。3、投影的基本概念它是一种横轴等角切圆柱投影。它把地球视为球体,假想一个平面卷成一个横圆柱面并把它套在球体外面,使横轴圆柱的轴心通过球的中心,球面上一根子午线与横轴圆柱面相切。这样,该子午线在圆柱面上的投影为一直线,赤道面与圆柱面的交线是一条与该子午线投影垂直的直线。将横圆柱面展开成平面,由这两条正交直线就构成高斯-克吕格平面直角坐标系。为减少投影变形,高斯-克吕格投影分为3o带和6o带投影。4、分带投影(1)高斯投影6度带:自0度子午线起每隔经差 自西向东分带,依次编号1,2,3,。我国6度带中央子午线的经度,由75度起每隔6度而至135度,共计11带(1323带),带号用L表示,中央子午线的经度用n表示,它们的关系是L=6n-3 ,如上图所示。(2)高斯投影3度带:它的中央子午线一部分同6度带中央子午线重合,一部分同6度带的分界子午线重合,如用 n表示3度带的带号, 表示L带中央子午线经度,它们的关系L=3n。我国3度带共计22带(2445带)。5、高斯平面直角坐标系在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午线和赤道的交点o作为坐标原点,以中央子午线的投影为纵坐标x轴,以赤道的投影为横坐标y轴。 在我国 坐标都是正的, 坐标的最大值(在赤道上)约为330km。为了避免出现负的横坐标,可在横坐标上加上500 000m。此外还应在坐标前面再冠以带号。这种坐标称为国家统一坐标。 这也就是为什么在RTK测量中在输入投影参数时,Y坐标加常数增加了500 000m的原因。 6、高斯平面投影的特点 中央子午线无变形; 无角度变形,图形保持相似; 离中央子午线越远,变形越大。 由此可见,在测量中,如果中央子午线输错了,投影的中央子午线就会编离实地坐标系正确的中央子午线,变形就越大,最终的结果就使用测量的误差更大。 二、RTK使用中中央子午线的判断 1、查看当地的经度 新到一个测区,如果别人只提供了坐标系而没有提供中央子午线时,我们可以通过以下方式来判断。 架设好仪器,在手薄中点击下图中右上角的“TG”快捷键,或按手薄上的“6”,或是点击屏幕下方的“望远镜”图标即可查看到当地的经纬度信息。 2、判断当地的央央子午线 (1)引用国家控制点 一般情况下国家控制点都是按正常的3度带和6度带。一般看坐标的带号即可知道。在一般的RTK测量中,都是以3度带来投影,这样变形越小。根据之前所说L=3n 来判断中央子午线。 以经验来计算,如上图所示,选用经度中的度去除以3,如果不能整除时,往后减1得到112,往后加1得到114,再分别去除以3,如果能除尽,则说明此为中央子午线。在这里114可以除尽,说明114为中央子午线,而它的控制范围为左右1度30 分,即112度30分 115度30分。而当前的113度21分在这个范围内,说明114即为当地3度带的中央子午线。 有时测区正好在两个带交叉的地方可是在某一带的边缘,这时在选择已知点时一定要注意,不要同时使用两个度带中的已知点坐标进行求取转换参数,必须使用时先进行度带的换算。 (2)引用城市独立坐标系 由于大部分城市坐标系为了保密或是提高当地的精度,都是在原有的国家坐标系上进行了平移旋转等参数的改变,所以设定坐标系椭球参数时选择“用户自定义”,输入当前坐标系的“椭球系长轴”和“椭球系扁率,中央子午线也必须已知。个人无法判断。 (3)自定义独立坐标系 在某些测量中,不加入国家已知点或城市坐标系的已知点,在设定投影参数时,可以延用54或80坐标系。根据测区的大小,在测区中心差不多位置查看一下当地的经度,假如:113度21分59.7601秒,在一般情况下投影到分上即可。在这里我们就选用113度20分作为此测区的中央子午线。在RTK手薄中输入“113.2”。控制点坐标库的应用及参数分类一、控制点坐标库的应用 GPS 接收机输出的数据是 WGS-84 经纬度坐标,需要转化到施工测量坐标,这就需要软件进行坐标转换参数的计算和设置,控制点坐标库就是完成这一工作的主要工具。 控制点坐标库是计算四参数和高程拟合参数的工具,可以方便直观的编辑、查看、调用参与计算四参数和高程拟合参数的校正控制点。 利用控制点坐标库可以计算GPS 原始记录坐标到当地施工坐标的参数。在计算之前,需新建工程,输入当地的施工坐标系及中央子午线、投影高等。假设我们利用 A、B 这两个已知点来求取参数,那么首先要有 A、B 两点的 GPS 原始记录坐标和测量施工坐标。A、B 两点的 GPS原始记录坐标的获取有两种方式:一种是布设静态控制网,采用静态控制网布设时后处理软件的 GPS 原始记录坐标;另一种是 GPS 移动站在没有任何校正参数起作用的 Fixed(固定解)状态下记录的 GPS 原始坐标。1.1、校正参数 操作 :工具 校正向导 或 设置 求转换参数(控制点坐标库) 所需已知点数:1个校正参数是工程之星软件很特别的一个设计,它是结合国内的具体测量工作而设计的。校正参数实际上就是只用同一个公共控制点来计算两套坐标系的差异。根据坐标转换的理论,一个公共控制点计算两个坐标系误差是比较大的,除非两套坐标系之间不存在旋转或者控制的距离特别小。因此,校正参数的使用通常都是在已经使用了四参数或者七参数的基础上才使用的。在工程之星新版本中,在校正向导中已经取消了两点校正功能,如果两个以上的已知点请使用控制点坐标库来求取参数。习惯使用校正向导的人请尽快学习新版本。1.2 四参数 操作 :设置 求转换参数(控制点坐标库) 四参数是同一个椭球内不同坐标系之间进行转换的参数。在工程之星软件中的四参数指的是在投影设置下选定的椭球内 GPS 坐标系和施工测量坐标系之间的转换参数。工程之星提供的四参数的计算方式有两种,一种是利用“工具/参数计算/计算四参数”来计算,另一种是用“控制点坐标库”计算。需要特别注意的是参予计算的控制点原则上至少要用两个或两个以上的点,控制点等级的高低和分布直接决定了四参数的控制范围。经验上四参数理想的控制范围一般都在 57 公里以内。 四参数的四个基本项分别是:X 平移、Y 平移、旋转角和比例。 从参数来看,这里没有高程改正,所以建议采用“控制点坐标库”来求取参数,而根据已知点个数的不同所求取的参数也会不同,具体有以下几种。1.2.1 四参数+校正参数 所需已知点个数:2个1.2.2 四参数+高程拟合 GPS 的高程系统为大地高(椭球高) ,而测量中常用的高程为正常高。所以 GPS 测得的高程需要改正才能使用,高程拟合参数就是完成这种拟和的参数。计算高程拟和参数时,参予计算的公共控制点数目不同时计算拟和所采用的模型也不一样,达到的效果自然也不一样 。 高程拟后有三种拟合方式:a.高程加权平均 所需已知点个数:3个b.高程平面拟合 所需已知点个数:4 6个b. 高程曲面拟合 所需已知点个数:7个以上二、七参数 操作 :工具 参数计算 计算七参数 所需已知点个数:3个或3个以上 七参数的应用范围较大(一般大于 50 平方公里) ,计算时用户需要知道三个已知点的地方坐标和 WGS-84 坐标,即 WGS-84 坐标转换到地方坐标的七个转换参数。 注意:三个点组成的区域最好能覆盖整个测区,这样的效果较好。 七参数的格式是,X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比)。 七参数的控制范围和精度虽然增加了,但七个转换参数都有参考限值,X、Y、Z 轴旋转一般都必须是秒级的(工程之星中限值为小于10秒);X、Y、Z 轴平移一般小于 1000。若求出的七参数不在这个限值以内,一般是不能使用的。这一限制还是比较苛刻的,因此在具体使用七参数还是四参数时要根据具体的施工情况而定。三、总结 使用四参数方法进行 RTK的测量可在小范围(20-30 平方公里)内使测量点的平面坐标及高程的精度与已知的控制网之间配合很好,只要采集两点或两点以上的地方坐标点就可以了,但是在大范围(比如几十几百平方公里)进行测量的时候,往往转换参数不能在部分范围起到提高平面和高程精度的作用,这时候就要使用七参数方法,具体方法在下面介绍。 首先需要做控制测量和水准测量,在区域中的已知坐标的控制点上做静态控制,然后再进行网平差之前,在测区中选定一个控制点 A做为静态网平差的 WGS84 参考站。 使用一台静态仪器在该点固定进行 24 小时以上的单点定位测量(这一步在测区范围相对较小,精度要求相对低的情况下可以省略) ,然后再导入到软件里将该点单点定位坐标平均值记录下来,作为该点的 WGS84 坐标,由于做了长时间观测,其绝对精度应该在 2米左右,然后对控制网进行三维平差,需要将 A点的 WGS84 坐标作为已知坐标,算出其他点位的三维坐标,但至少三组以上,输入完毕后计算出七参数。 南方RTK参数的求取及操作流程技术部 朱代军随着工程之星新程序(2007.03.26版)的发布,在以往坐标校正中都采用“校正向导”来进行操作,在同一地区多天作业可以延用同一个参数,每次去校正一个已知点即可。每次作业时基站任意架设即可。对于刚接触GPS或是初学者,请按以下步骤练习操作。 一、新测区首次作业。当我们到一个新的测区时,首选要做的工作就是得到我们坐标转换参数,四参数是最为常见了,以下就以求四参数步骤再次写一下。1、基站架设在未知点。进入工程之星,将手薄联通移动站主机,确认一切工作正常;2、新建工程 工程-新建工程(输入作业名、输入坐标系、输入中央子午线、投影面高)3、分别到两个已知点上按 A 测量(输入点名、移动站天线高)4、计算四参数设置-求转换参数/控制点坐标库(增加已知点坐标与测量出的原始坐标)-此步详细操作-假定工程名为:south 有a,b两点并提供了两点的已经点坐标,测量WGS84数据为PT1,PT2。增加(输入a点坐标) - OK - 坐标管理库选点 - 导入(WGS84文件south.rtk) - 选择a点所测量的数据PT1 - 确定 -OK增加(输入b点坐标) - OK- 坐标管理库选点 -选择b点所测量的数据PT2 - 确定 - OK-继续以下操作 - 保存(把增加的数据保存了一个转换参数文件 *.cot,以后会用到这个文件)应用(系统自动计算出转换参数添加到系统四参数中,高程也会自动进行改正,可检查参数是否可用,关于RTK的工作原理和精度分析 )从实际的经验值来看,如果计算出来的参数比例大于1时,小数点后四个0以上,如果小于1,小数点后四个9这样才比较好,简言之,比便应该在0.9999 1.0000之间。5、检核数据,在其中一个已知上对中整平按 A 测量保存。双击 B 查看测量数据,调出刚刚测量的点与已知坐标进行比对,一般情况下,误差都在允许范围内。6、在测量区比较好的地方定上两个以上的固定点,用于我们以后的校正用。7、进行我们其它程序的操作。二、第二次作业由于前次作业,我们已经保存了校正参数文件(*.cot),并且在有利的地方我们定出两个以上的点,本次作业的工作就不必再像前次一样去测量出已知点的原始数据计算参数了,只要导入前次的参数应用即可。A、 第一种方法:初学型1、新建工程(输入作业名、坐标系、中央子午线)2、导入校正参数设置- 求转换参数- 导入(选择前日所保存的*.cot文件) 应用(将计算出的转换参数添加到系统四参数中)注:新版工程之星中已将“控制点坐标库”改变“求转换参数”3、单点校正工具-校正向导(由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论