已阅读5页,还剩70页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,华东师大版初中数学八年级上册,14.1.1直角三角形三边的关系,.,相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系,.,学习目标:1、会用数格子的方法求正方形的面积。2、在直角三角形中,已知两边能求第三边。,自学指导:1、阅读教材48-49页,探索勾股定理的推导过程。2、找出勾股定理的内容?,.,1,1,2,SP+SQ=SR,C,图甲,1.观察图甲,小方格的边长为1.正方形A、B、C的面积各为多少?,正方形A、B、C的面积有什么关系?,.,C,图乙,2.观察图乙,小方格的边长为1.正方形A、B、C的面积各为多少?,9,16,25,SP+SQ=SR,正方形A、B、C的面积有什么关系?,1,1,2,“割”,“补”,.,图乙,2.观察图乙,小方格的边长为1.,9,16,25,SP+SQ=SR,正方形A、B、C的面积有什么关系?,4,4,8,SP+SQ=SR,图甲,a,c,a,b,c,b,3.猜想a、b、c之间的关系?,a2+b2=c2,.,分别以5cm、12cm为直角三角形的直角边作出一个直角三角形ABC,测量斜边的长度,然后验证上述关系对这个直角三角形是否成立。,13,5,12,.,勾股定理(毕达哥拉斯定理)(gougutheorem),如果直角三角形两直角边分别为a,b,斜边为c,那么,即直角三角形两直角边的平方和等于斜边的平方.,a,c,勾,弦,b,股,.,c2=a2+b2,a2=c2b2,b2=c2a2,结论变形,直角三角形中,两直角边的平方和等于斜边的平方;,.,例1.在RtABC中,=90.(1)已知:a=6,=8,求c;(2)已知:a=40,c=41,求b;(3)已知:c=13,b=5,求a;(4)已知:a:b=3:4,c=15,求a、b.,例题分析,(1)在直角三角形中,已知两边,可求第三边;(2)可用勾股定理建立方程.,方法小结,.,例题2:如图,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底端B的距离AB.(精确到0.01米),解:在RtABC中ABC=90,BC=2.16,CA=5.41,根据勾股定理得4.96(米),.,1、求出下列直角三角形中未知边的长度。,6,x,25,24,8,X,试一试:,.,5或,2、已知:RtBC中,AB,AC,则BC的长为.,试一试:,.,两千多年前,古希腊有个哥拉,斯学派,他们首先发现了勾股定理,因此,在国外人们通常称勾股定理为毕达哥拉斯,年希腊曾经发行了一枚纪念票。,定理。为了纪念毕达哥拉斯学派,1955,勾股世界,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家多年,两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。,我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作周髀算经中。,.,1、这节课你学到了什么知识?,小结:,3、你还有什么疑惑或没有弄懂的地方?,2、运用“勾股定理”应注意什么问题?,.,1、课本55页第2、3题。,作业,2、查阅有关勾股定理的历史资料。,3.(选做)已知等腰直角三角形斜边的长为2cm,求这个三角形的周长?,.,再见,.,14.1.2验证勾股定理,.,如果直角三角形的两条直角边分别为a、b,斜边为c,那么这三边a、b、c有什么关系呢?勾股定理揭示了直角三角形的边与边的关系,那么如何证明这个定理呢?,问题:,.,学习目标:,1.会通过拼图,用面积的方法说明勾股定理的正确性。2.能通过实例应用勾股定理。,自学指导:,1.阅读教材51-52页,试用两种方法表示大正方形的面积,得出结论。2.注意应将例题中的实际问题转化为数学问题,抽象出直角三角形。,.,b,a,c,勾股定理的证明(一),大正方形的面积可以表示为;也可以表示为。,(a+b)2,所以,.,勾股定理的证明(二),最早是由1700多年前三国时期的数学家赵爽为周髀算经作注时给出的,他用面积法证明了勾股定理,你能写证明过程吗?,“弦图”,2ab+(b-a)2=c2即2ab+b2-2ab+a2=c2所以a2+b2=c2,.,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。,有趣的总统证法,.,伽菲尔德证法,.,例1小丁的妈妈买了一部34英寸(86厘米)的电视机。小丁量了电视机的屏幕后,发现屏幕只有70厘米长和50厘米宽,他觉得一定是售货员搞错了。你能解释这是为什么吗?,售货员没搞错,荧屏对角线大约为86厘米,解:702+502=7400,862=7396,.,例2如图所示,为了求出湖两岸的A、B两点间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形通过测量,得到AC的长为160米,BC长为128米问从点A穿过湖到点B有多远?,答:从点A穿过湖到点B有96米。,解:在直角三角形ABC中,AC=160米,BC=128米,根据勾股定理可得,.,.如图,小方格都是边长为1的正方形,求四边形ABCD的面积与周长.,E,F,G,H,现学现用:,.,假期中,王强和同学到某海岛上去玩探宝游戏,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,在折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米?,A,B,8,2,3,6,1,.,1这节课你学到了什么知识?,3、你还有什么疑惑或没有弄懂的地方?,2运用“勾股定理”应注意什么问题?,小结,.,作业,1、课本第55页4、5题。2、阅读课本55页的阅读材料3、(选做题)九章算术勾股章第6题:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐问水深、葭长几何?(本题的意思是:有一水池一丈见方,池中生有一棵类似芦苇的植物,露出水面一尺,如把它引向岸边,正好与岸边齐,问水有多深,该植物有多长?),.,再见!,.,直角三角形的判定,.,古埃及人曾用下面的方法得到直角,.,按照这种做法真能得到一个直角三角形吗?,古埃及人曾用下面的方法得到直角:,用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。,.,1、了解勾股定理的逆定理与勾股定理的互逆性。2、会通过三角形三边的数量关系来判断它是否为直角三角形。,学习目标:,自学指导:,1、按要求作出53页的三角形,并观察是什么三角形。2、阅读教材53-54页,理解勾股定理的逆定理。,.,下面的三组数分别是一个三角形的三边长a,b,c:,3,4,4;2,3,4;3,4,5,动手画一画,.,勾股定理,互为逆定理,勾股定理的逆定理,.,设AB是ABC中三边中最长边,则有:,AC2+BC2AB2ACB为锐角,.,例1设三角形三边长分别为下列各组数,试判断各三角形是否是直角三角形:(1)7,24,25(2)12,35,37(3)13,11,9,分析:由勾股定理的逆定理,判断三角形是不是直角三角形,只要看两条较小边的平方和是否等于最大边的平方。,解:因为所以根据前面的判定方法可知,以(1)、(2)两组数为边长的三角形是直角三角形,而以组(3)的数为边长的三角形不是直角三角形。,.,下面以a,b,c为边长的三角形是不是直角三角形?如果是那么哪一个角是直角?,(1)a=25b=20c=15_;,(2)a=13b=14c=15_;,是,不是,是,A=900,B=900,(3)a=1b=2c=_;,像25,20,15,能够成为直角三角形三条边长的三个正整数,称为勾股数.,.,1、请你写出三组勾股数;2、一组勾股数的整数倍一定是勾股数吗?为什么?,.,例2设三角形ABC分别满足下列条件,试判断各三角形是否是直角三角形:,提示:三角形的内角和等于1800,.,B,A、锐角三角形B、直角三角形C、钝角三角形D、等边三角形,.,例3一个零件的形状如左图所示,按规定这个零件中A和DBC都应为直角。工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?,思考:此时四边形ABCD的面积是多少?,.,解释“古埃及人画直角”的理论根据.,A,C,B,解:如图,设每两个结的距离为a(a0),则AC=3a,BC=4a,AB=5a.,.,本节课你有什么收获?,.,1.教科书54页,习题14.1第6题2.(选做题)已知ABC的三边分别为a,b,c,且a=m2-n2,b=2mn,c=m2+n2(mn,m、n是正整数),ABC是直角三角形吗?说明理由。,作业:,提示:先来判断a,b,c三边哪条最长,可以代m,n为满足条件的特殊值来试,m=5,n=4.则a=9,b=40,c=41,c最大。,.,再见!,.,勾股定理的应用(1),.,学习目标:,能利用勾股定理和勾股定理逆定理解决简单的实际问题;在学习的过程中注意理论与实际问题的联系;通过学习提高同学们的空间想象能力.,.,A,B,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.(精确到0.01cm),C,D,了解下面题目,再自学课本第57页例1;重点了解怎样利用课本知识解决实际问题.,我怎么走会最近呢?,.,例1如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.(精确到0.01cm),A,B,C,D,我怎么走会最近呢?,分析:蚂蚁实际上是在圆柱的半个侧面内爬行,如果将这半个侧面展开(如图),得到矩形D,根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形对角线AC之长,解如图,在Rt中,底面周长的一半cm,AC(cm)(勾股定理)答:最短路程约为cm,.,拓展1如果圆柱换成如图的棱长为10cm的正方体盒子,蚂蚁沿着表面需要爬行的最短路程又是多少呢?,.,.,拓展2如果盒子换成如图长为3cm,宽为2cm,高为1cm的长方体,蚂蚁沿着表面需要爬行的最短路程又是多少呢?,.,分析:蚂蚁由A爬到B过程中较短的路线有多少种情况?,(1)经过前面和上底面;,(2)经过前面和右面;,(3)经过左面和上底面.,.,(1)当蚂蚁经过前面和上底面时,如图,最短路程为,解:,AB,.,(2)当蚂蚁经过前面和右面时,如图,最短路程为,AB,.,(3)当蚂蚁经过左面和上底面时,如图,最短路程为,AB,.,例2一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?说明理由。,O,C,D,H,2米,2.3米,分析:由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH如图所示,点D在离厂门中线0.8米处,且CDAB,与地面交于H,解:,CD,CH0.62.32.9(米)2.5(米).,因此高度上有0.4米的余量,所以卡车能通过厂门,在RtOCD中,由勾股定理得,0.6米,,.,练习1.如图,从电杆离地面5米处向地面拉一条长7米的钢缆,求地面钢缆固定点A到电杆底部B的距离.,C,解:如图,在Rt中,AC=7米,BC=5米,,答:地面钢缆固定点A到电杆底部B的距离是米.,(米),由勾股定理,得,.,练习2.如图所示,校园内有两棵树相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞米.,A,B,C,13,.,2.在运用勾股定理时,我们必须首先明确哪两条边是直角边,哪一条是斜边.,3.数学来源与生活,同时又服务于我们的生活.数学就在我们的身边,我们要能够学以致用.,1.运用勾股定理解决实际问题,关键在于“找”到合适的直角三角形.,小结,.,作业1.必做题:课本P60习题14.2第1、3题.2.选做题:在一棵树的10米高处B有两只猴子,其中一只猴子爬下树走到离树20米的池塘A,另一只猴子爬到树顶D后直接跃向池塘的A处,如果两只猴子所经过距离相等,试问这棵树有多高?,.,再见!,.,勾股定理的应用(2),.,学习目标:,能熟练运用勾股定理及其逆定理解决实际问题;通过学习提高同学们的逻辑推理能力.,自学指导:,阅读教材59页,注意理解例题中的逻辑推理过程。,.,例1如右图,已知CDm,ADm,ADC,BCm,m求图中阴影部分的面积,解:在RtADC中,,ACB为直角三角形(如果三角形的三边长a、b、c有关系:a2b2c2,那么这个三角形是直角三角形),,.,例2葭生池中今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐。问:水深、葭长各几何?,解:可设葭长为x尺,,则水深为(x-1)尺,则有:(x-1)2+52=x2,解得:x=13,所以:葭长13尺,水深12尺。,水池,X尺,.,1.一架飞机在天空中水平飞行,某一时刻正好飞到一个男孩头顶正上方3000米处,过了20秒,飞机距离这个男孩头顶5000米,试
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025国电投(河南)新动力科技有限公司招聘14人笔试历年典型考点题库附带答案详解试卷3套
- 2025中铁十九局集团有限公司校园招聘笔试历年备考题库附带答案详解试卷3套
- 固废分类与回收系统建设方案
- 福建公务员考试公务员试题及答案
- 管网建设中的环境影响评估与治理方案
- 市政路网及配套设施工程施工方案
- 财会公务员考试真题卷试题及答案
- 滨海公务员考试行测试题及答案
- 北京区级公务员考试真题试题及答案
- 安庆公务员考试考场试题及答案
- 2023射线检测工艺规程
- 大学生创新创业基础(创新创业课程)完整全套教学课件
- 大学生职业生涯发展报告
- 山东省济南市(2024年-2025年小学四年级语文)统编版阶段练习((上下)学期)试卷及答案
- 复式统计表(教学设计)-2023-2024学年五年级上册数学苏教版
- 新型电力电子拓扑与控制
- 财税201758号文深度解析:工程项目预收账款财税处理大调整
- 六年级英语阅读27篇
- 2024年温州工业与能源集团招聘笔试参考题库附带答案详解
- 心肌淀粉样变护理措施
- DB21-T 2986.6-2018公共场所风险等级与安全防护 第6部分:图书场馆
评论
0/150
提交评论