北师大版八年级下册数学《第六章 小结与复习》PPT课件_第1页
北师大版八年级下册数学《第六章 小结与复习》PPT课件_第2页
北师大版八年级下册数学《第六章 小结与复习》PPT课件_第3页
北师大版八年级下册数学《第六章 小结与复习》PPT课件_第4页
北师大版八年级下册数学《第六章 小结与复习》PPT课件_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

小结与复习,第六章平行四边形,要点梳理,考点讲练,课堂小结,课后作业,北师大版八年级下册数学教学课件,几何语言,文字叙述,对边平行,对边相等,对角相等,AD=BC,AB=DC.,四边形ABCD是平行四边形,,A=C,B=D.,四边形ABCD是平行四边形,,一、平行四边形的性质,要点梳理,对角线互相平分,四边形ABCD是平行四边形,,OA=OC,OB=OD.,四边形ABCD是平行四边形,,ADBC,ABDC.,平行四边形是中心对称图形.,几何语言,文字叙述,两组对边相等,一组对边平行且相等,四边形ABCD是平行四边形.,AD=BC,AB=DC,四边形ABCD是平行四边形.,AB=DC,ABDC,二、平行四边形的判定,对角线互相平分,四边形ABCD是平行四边形.,OA=OC,OB=OD,两组对边分别平行(定义),四边形ABCD是平行四边形.,ADBC,ABDC,平行线之间的距离处处相等,1.三角形的中位线定义:连结三角形两边中点的线段叫做三角形的中位线.,2.三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.,三、三角形的中位线,用符号语言表示,DE是ABC的中位线,DEBC,四、多边形的内角和与外角和,多边形的内角和等于(n-2)180,多边形的外角和等于360,正多边形每个内角的度数是,正多边形每个外角的度数是,考点讲练,例1如图,在平行四边形ABCD中,下列结论中错误的是()A1=2BBAD=BCDCAB=CDDAC=BC,【解析】A.四边形ABCD是平行四边形,ABCD,1=2,故A正确;B.四边形ABCD是平行四边形,BAD=BCD,故B正确;C.四边形ABCD是平行四边形,AB=CD,故C正确;,D,主要考查了平行四边形的性质,关键是掌握平行四边形对边相等且平行,对角相等.,1.如图,已知ABCD中,AE平分BAD,CF平分BCD,分别交BC、AD于E、F求证:AF=EC,证明:四边形ABCD是平行四边形,B=D,AD=BC,AB=CD,BAD=BCD,(平行四边形的对角相等,对边相等)AE平分BAD,CF平分BCD,EAB=BAD,FCD=BCD,EAB=FCD,在ABE和CDF中BDABCDEABFCDABECDF,BE=DFAD=BCAF=EC,例2如图,在ABCD中,ODA=90,AC=10cm,BD=6cm,则AD的长为()A4cmB5cmC6cmD8cm,【解析】四边形ABCD是平行四边形,AC=10cm,BD=6cmOA=OC=AC=5cm,OB=OD=BD=3cm,ODA=90,AD=4cm,A,主要考查了平行四边形的性质,平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.,【解析】在ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,AO=CO=12cm,BO=19cm,AD=BC=28cm,BOC的周长是:BO+CO+BC=12+19+28=51(cm),2.如图,在ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则BOC的周长是()A45cmB59cmC62cmD90cm,B,例3如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()AOA=OC,OB=ODBBAD=BCD,ABCDCADBC,AD=BCDAB=CD,AO=CO,D,平行四边形的判定方法:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.,3.如图,点D、C在BF上,ACDE,A=E,BD=CF,(1)求证:AB=EF,(1)证明:ACDE,ACD=EDF,BD=CF,BD+DC=CF+DC,即BC=DF,又A=E,ABCEFD(AAS),AB=EF;,(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由,(2)猜想:四边形ABEF为平行四边形,理由如下:由(1)知ABCEFD,B=F,ABEF,又AB=EF,四边形ABEF为平行四边形.(一组对边平行且相等的四边形是平行四边形),例4如图,已知E、F分别是ABCD的边BC、AD上的点,且BE=DF求证:四边形AECF是平行四边形,证明:四边形ABCD是平行四边形,ADBC,且AD=BC,(平行四边形的对边平行且相等)AFEC,BE=DF,AF=EC,四边形AECF是平行四边形,本题考查了平行四边形的性质和判定的应用,注意平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.,4.如图,在四边形ABCD中,对角线AC、BD相交于点O,E、F分别是BO、OD的中点,且四边形AECF是平行四边形,试判断四边形ABCD是不是平行四边形,并说明理由,证明:平行四边形AECF,OA=OC,OE=OF,(平行四边形的对角线互相平分)E、F分别是BO、OD的中点,2OE=2OF,即OB=OC,OA=OC,四边形ABCD是平行四边形.(对角线互相平分的四边形是平行四边形),例5已知:AD是ABC的中线,E是AD的中点,F是BE的延长线与AC的交点。求证:.,证明:过点D作DHBF,交AC于点H.AD是ABC的中线D是BC的中点CHHFCFE是AD的中点,EFDHAFFH.AFFC,A,B,C,D,E,F,H,5.若三角形的三条中位线之比为6:5:4,三角形的周长为60cm,那么该三角形中最长边的边长为;,解析:设三角形的三条中位线之长分别为6x,5x,4x,则三角形的三条边长之长分别为12x,10 x,8x,依题意有12x10 x8x60,,解得x2.,所以,最长边12x24(cm).,24cm,例6:已知一个多边形的每个外角都是其相邻内角度数的,求这个多边形的边数.,解:设此多边形的外角的度数为x,则内角的度数为4x,则x+4x=180,解得x=36.边数n=36036=10.,6.一个正多边形的每一个内角都等于120,则其边数是.,6,【解析】因为该多边形的每一个内角都等于120度,所以它的每一个外角都等于60.所以边数是6.,在多边形的有关求边数或内角、外角度数的问题中,要注意内角与外角之间的转化,以及定理的运用.尤其在求边数的问题中,常常利用定理列出方程,进而再求得边数.,平行四边形,性质,对边平行且相等,对角相等,邻角互补,对角线互相平分,判别,两组对边分别平行的,两组对边分别相等的,一组对边平行且相等的,对角线互相平分的,四边形,课堂小结,三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.,多边形的内角和与外角和,内角和计算公式,(n-2)180(n3的整数),外角和,多边形的外角和等于360特别注意:与边数无关。,正多边形,内角=,外角=,课后作业,见章末练习,“部编本”语文教材解读“部编本”语文教材的编写背景。(一)教材要体现国家意识、主流意识形态、党的认同,体现立德树人从娃娃抓起。(二)体现核心素养,中国学生发展核心素养包括社会责任,国家认同、国际理解、人文底蕴、科学精神、审美情趣、学会学习、身心健康、实践创新。(三)语文、道德与法制、历史三个学科教材统编是大趋势。(四)“一标多本”教材质量参差不齐,“部编本”力图起到示范作用。二、“部编本”教材的编写理念:(一)体现核心价值观,做到“整体规划,有机渗透”。(二)接地气,满足一线需要,对教学弊病起纠偏作用。提倡全民阅读,注重两个延伸:往课外阅读延伸,往语文生活延伸。(三)加强了教材编写的科学性,编研结合。(四)贴近当代学生生活,体现时代性。“部编本”语文教材的七个创新点:(一)选文创新:课文总数减少,减少汉语拼音的难度。(二)单元结构创新更加灵活的单元结构体制,综合性更强。(三)重视语文核心素养,重建语文知识体

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论