




已阅读5页,还剩86页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章应力状态与强度理论,7-1概述,一、应力状态的概念,1.低碳钢和铸铁的拉伸实验,低碳钢,?,塑性材料拉伸时为什么会出现滑移线?,铸铁,单轴应力状态,?,为什么脆性材料扭转时沿45螺旋面断开?,低碳钢,铸铁,2.低碳钢和铸铁的扭转实验,纯剪切应力状态,3、应力的点面概念,应力单元体,t,同一面上不同点的应力各不相同,此即应力的点的概念。,此例表明:即使同一点在不同方位截面上,它的应力也是各不相同的,此即应力的面的概念。,(1)拉中有切,切中有拉;(2)不仅横截面上存在应力,斜截面上也存在应力;(3)同一面上不同点的应力各不相同;(4)同一点不同方向面上的应力也是各不相同,3.重要结论,哪一点?哪个方向面?,哪一个面上?哪一点?,4.一点的应力状态,过一点不同方向面上应力情况的集合,称之为这一点的应力状态,亦指该点的应力全貌.,研究杆件受力后各点,特别是危险点处应力状态可以:,1.了解材料发生破坏的力学上的原因,例如低碳钢拉伸时的屈服现象是由于在切应力最大的45斜截面上材料发生滑移所致;又如铸铁圆截面杆的扭转破坏是由于在45方向拉应力最大从而使材料发生断裂所致。,2.在不可能总是通过实验测定材料极限应力的复杂应力状态下,如图所示,应力状态分析是建立关于材料破坏规律的假设(称为强度理论)的基础。,二、应力状态的研究方法,1.单元体,(2)任意一对平行平面上的应力相等,2.单元体特征,(1)单元体的尺寸无限小,每个面上应力均匀分布,三、应力状态的分类,1.空间应力状态三个平行平面上应力均不等于零,2.平面应力状态三个平行平面中有一个平面上应力为零,另两个平面应力不等于零。,3.单轴应力状态三个平行平面中有两个平面上应力为零,只有一个平面应力不等于零。,例题画出如图所示梁S截面的应力状态单元体.,S平面,例题画出如图所示梁危险截面危险点的应力状态单元体,y,x,z,例题分析薄壁圆筒受内压时的应力状态,薄壁圆筒的横截面面积,(1)沿圆筒轴线作用于筒底的总压力为F,(2)假想用一直径平面将圆筒截分为二,并取下半环为研究对象,平面应力状态的普遍形式如图所示.单元体上有x,xy和y,yx,7-2平面应力状态的应力分析-主应力,平面应力状态是指,如果受力物体内一点处在众多不同方位的单元体中存在一个特定方位的单元体,它的一对平行平面上没有应力,而另外两对平行平面上应力不等于零的状态。,一、斜截面上的应力,1.截面法假想地沿斜截面e-f将单元体截开,留下左边部分的单体元eaf作为研究对象,(1)由x轴转到外法线n,逆时针转向时为正,(2)正应力仍规定拉应力为正,(3)切应力对单元体内任一点取矩,顺时针转为正,2.符号的确定,t,(4)切应力两个下标:第一个下标表示切应力所在平面;第二个下标表示切应力方向。,设斜截面的面积为dA,a-e的面积为dAcos,a-f的面积为dAsin,3.任意斜截面上的应力,对研究对象列n和t方向的平衡方程得,t,化简以上两个平衡方程最后得,二、应力圆,1、应力圆,将斜截面应力计算公式改写为,把上面两式等号两边平方,然后相加便可消去,得,因为x,y,xy皆为已知量,所以上式是一个以,为变量的圆周方程.当斜截面随方位角变化时,其上的应力,在-直角坐标系内的轨迹是一个圆.,1.圆心的坐标,2.圆的半径,此圆习惯上称为应力圆,或称为莫尔圆,(1)建-坐标系,选定比例尺,二、应力圆作法,1.步骤(Steps),O,(2)量取,OA=x,AD=xy,得D点,OB=y,(3)量取,BD=yx,得D点,(4)连接DD两点的直线与轴相交于C点,(5)以C为圆心,CD为半径作圆,该圆就是相应于该单元体的应力圆,(1)该圆的圆心C点到坐标原点的距离为,(2)该圆半径为,2.证明,3、应力圆的应用,(1).求单元体上任一截面上的应力,从应力圆的半径CD按方位角的转向转动2得到半径CE.圆周上E点的坐标就依次为斜截面上的正应力和切应力.,O,20,证明:,O,20,(1)点面之间的对应关系:单元体某一面上的应力,必对应于应力圆上某一点的坐标.,(2)夹角关系:圆周上任意两点所引半径的夹角等于单元体上对应两截面夹角的两倍.两者的转向一致.,三、主应力及主平面,主平面:一点处切应力等于零的平面,主应力是过一点处不同方位截面上正应力的极值,一点处必定存在一个单元体,其三个相互垂直的面均为主平面。(主应力单元体)存在三个主应力1,2,3,且规定,主应力:主平面上的正应力,性质:,1.基本概念,2.主应力数值和主平面位置,(1)主应力数值,A1和B1两点为与主平面对应的点,其横坐标为主应力1,2,(2)主平面方位,由CD顺时针转20到CA1,所以单元体上从x轴顺时针转0(负值)即到1对应的主平面的外法线,0确定后,1对应的主平面方位即确定,3.求最大切应力,G1和G两点的纵坐标分别代表最大和最小切应力,因为最大、最小切应力等于应力圆的半径,例题从水坝体内某点处取出的单元体如图所示,x=-1MPa,y=-0.4MPa,xy=-0.2MPa,yx=0.2MPa,(1)绘出相应的应力圆,(2)确定此单元体在=30和=-40两斜面上的应力.,解:(1)画应力圆,量取OA=x=-1,AD=xy=-0.2,定出D点;,OB=y=-0.4和,BD=yx=0.2,定出D点.,以DD为直径绘出的圆即为应力圆.,将半径CD逆时针转动2=60到半径CE,E点的坐标就代表=30斜截面上的应力。,(2)确定=30斜截面上的应力,(3)确定=-40斜截面上的应力,将半径CD顺时针转2=80到半径CF,F点的坐标就代表=-40斜截面上的应力.,例题两端简支的焊接工字钢梁及其荷载如图所示,梁的横截面尺寸示于图中.试绘出截面C上a,b两点处的应力圆,并用应力圆求出这两点处的主应力.,解:(1)首先计算支反力,并作出梁的剪力图和弯矩图,Mmax=MC=80kNm,FSmax=FC左=200kN,(2)横截面C上a点的应力为,a点的单元体如图所示,由x,xy定出D点,由y,yx定出D点,以DD为直径作应力圆,O,(3)做应力圆,x=122.5MPa,xy=64.6MPa,y=0,xy=-64.6MPa,A1,A2两点的横坐标分别代表a点的两个主应力1和3,A1点对应于单元体上1所在的主平面,(4)横截面C上b点的应力,b点的单元体如图所示,b点的三个主应力为,1所在的主平面就是x平面,即梁的横截面C,已知受力物体内某一点处三个主应力1,2,3,利用应力圆确定该点的最大正应力和最大切应力.,一、空间应力状态下的最大正应力和最大切应力,7-3空间应力状态的概念,首先研究与其中一个主平面(例如主应力3所在的平面)垂直的斜截面上的应力,1,2,2,用截面法,沿求应力的截面将单元体截为两部分,取左下部分为研究对象,主应力3所在的两平面上是一对自相平衡的力,因而该斜面上的应力,与3无关,只由主应力1,2决定,与3垂直的斜截面上的应力可由1,2作出的应力圆上的点来表示,该应力圆上的点对应于与3垂直的所有斜截面上的应力,O,与主应力2所在主平面垂直的斜截面上的应力,可用由1,3作出的应力圆上的点来表示,与主应力所在主平面垂直的斜截面上的应力,可用由2,3作出的应力圆上的点来表示,该截面上应力和对应的D点必位于上述三个应力圆所围成的阴影内,abc截面表示与三个主平面斜交的任意斜截面,a,b,c,1,2,1,2,3,结论,三个应力圆圆周上的点及由它们围成的阴影部分上的点的坐标代表了空间应力状态下所有截面上的应力,该点处的最大正应力(指代数值)应等于最大应力圆上A点的横坐标1,最大切应力则等于最大的应力圆的半径,最大切应力所在的截面与2所在的主平面垂直,并与1和3所在的主平面成45角.,例题单元体的应力如图所示,作应力圆,并求出主应力和最大切应力值及其作用面方位.,解:该单元体有一个已知主应力,因此与该主平面正交的各截面上的应力与主应力z无关,依据x截面和y截面上的应力画出应力圆.求另外两个主应力,由x,xy定出D点,由y,yx定出D点,以DD为直径作应力圆,A1,A2两点的横坐标分别代表另外两个主应力1和3,O,1=46MPa,3=-26MPa,该单元体的三个主应力,1=46MPa,2=20MPa,3=-26MPa,根据上述主应力,作出三个应力圆,一、各向同性材料的广义胡克定律,(1)正应力:拉应力为正,压应力为负,1.符号规定,(2)切应力:对单元体内任一点取矩,若产生的矩为顺时针,则为正;反之为负,(3)线应变:以伸长为正,缩短为负;(4)切应变:使直角减者为正,增大者为负.,x,x,7-4应力与应变间的关系,x方向的线应变,用叠加原理,分别计算出x,y,z分别单独存在时,x,y,z方向的线应变x,y,z,然后代数相加.,2.各向同性材料的广义胡克定律,单独存在时,单独存在时,单独存在时,在x,y,z同时存在时,x方向的线应变x为,同理,在x,y,z同时存在时,y,z方向的线应变为,在xy,yz,zx三个面内的切应变为,上式称为广义胡克定律,沿x,y,z轴的线应变在xy,yz,zx面上的切应变,对于平面应力状态(假设z=0,xz=0,yz=0),3.主应力-主应变的关系,已知1,2,3;1,2,3为主应变,例题简支梁由18号工字钢制成.其上作用有力F=15kN,已知E=200GPa,v=0.3.,0.5,0.5,0.25,F,求:A点沿0,45,90方向的线应变,h/4,解:,yA,Iz,d查表得出,为图示面积对中性轴z的静矩,z,三、各向同性材料的体积应变,构件每单位体积的体积变化,称为体积应变用q表示.,各向同性材料在三向应力状态下的体应变,如图所示的单元体,三个边长为dx,dy,dz,变形后的边长分别为,变形后单元体的体积为,dx(1+,dy(1+2,dz(1+3,V1=dx(1+dy(1+2dz(1+3,体积应变为,纯剪切应力状态下的体积应变,即在小变形下,切应力不引起各向同性材料的体积改变.,在最一般的空间应力状态下,材料的体积应变只与三个线应变x,y,z有关,仿照上述推导有,在任意形式的应力状态下,各向同性材料内一点处的体积应变与通过该点的任意三个相互垂直的平面上的正应力之和成正比,而与切应力无关.,7-5空间应力状态的应变能密度,一、应变能密度的定义,二、应变能密度的计算公式,1.单轴应力状态下,物体内所积蓄的应变能密度为,物体在单位体积内所积蓄的应变能.,将广义胡克定律代入上式,经整理得,用vd表示与单元体形状改变相应的那部分应变能密度,称为形状改变能密度,用vV表示单元体体积改变相应的那部分应变能密度,称为体积改变能密度,2.三个主应力同时存在时,单元体的应变能密度为,可以证明:,应变能密度v由体积改变部分和形状改变部分构成。,图(a)所示单元体的三个主应力不相等,因而,变形后既发生体积改变也发生形状改变.,图(b)所示单元体的三个主应力相等,因而,变形后的形状与原来的形状相似,即只发生体积改变而无形状改变.,图b所示单元体的体积改变能密度,a单元体的应变能密度为,a所示单元体的体积改变能密度,空间应力状态下单元体的形状改变能密度,一、强度理论的概念,1.引言,7-6强度理论及其相当应力,轴向拉压,弯曲,扭转,弯曲,切应力强度条件,正应力强度条件,(2)材料的许用应力,是通过拉(压)试验或纯剪试验测定试件在破坏时其横截面上的极限应力,以此极限应力作为强度指标,除以适当的安全因数而得,即根据相应的试验结果建立的强度条件.,上述强度条件具有如下特点,(1)危险点处于单轴应力状态或纯剪切应力状态;,2.强度理论的概念,是关于“构件发生强度失效起因”的假说.,基本观点,构件受外力作用而发生破坏时,不论破坏的表面现象如何复杂,其破坏形式总不外乎几种类型,而同一类型的破坏则可能是某一个共同因素所引起的.,根据材料在复杂应力状态下破坏时的一些现象与形式,进行分析,提出破坏原因的假说.在这些假说的基础上,可利用材料在单轴应力状态时的试验结果,来建立材料在复杂应力状态下的强度条件.,脆性断裂:无明显的变形下突然断裂.,二、材料破坏的两种类型(常温、静载荷),塑性屈服失效材料出现显著的塑性变形而丧失其正常的工作能力.,2.脆性断裂失效,(1)第一类强度理论以脆性断裂作为破坏的标志,包括:最大拉应力理论和最大伸长线应变理论,(2)第二类强度理论以出现塑性屈服现象作为破坏的标志,包括:最大切应力理论和形状改变能密度理论,引起破坏的某一共同因素,形状改变能密度,最大切应力,最大伸长线应变,最大正应力,根据:当作用在构件上的外力过大时,其危险点处的材料就会沿最大拉应力所在截面发生脆断破坏.,1.最大拉应力理论(第一强度理论),基本假说:最大拉应力1是引起材料脆断破坏的因素.,脆断破坏的条件:1=u,四、第一类强度理论,强度条件:,1,2.最大伸长线应变理论(第二强度理论),根据:当作用在构件上的外力过大时,其危险点处的材料就会沿垂直于最大伸长线应变方向的平面发生破坏.,基本假说:最大伸长线应变1是引起材料脆断破坏的因素.,脆断破坏的条件:,最大伸长线应变:,强度条件:,1.最大切应力理论(第三强度理论),基本假说:最大切应力max是引起材料屈服的因素.,根据:当作用在构件上的外力过大时,其危险点处的材料就会沿最大切应力所在截面滑移而发生屈服失效.,屈服条件,五、第二类强度理论,在复杂应力状态下一点处的最大切应力为,强度条件,单轴拉伸下,1=s,2=3=0,材料的极限值,2.形状改变能密度理论(第四强度理论),基本假说:形状改变能密度vd是引起材料屈服的因素.,单轴拉伸下,1=s,2=3=0,材料的极限值,强度条件:,屈服准则:,六、相当应力,把各种强度理论的强度条件写成统一形式,r称为复杂应力状态的相当应力.,1.适用范围,(2)塑性材料选用第三或第四强度理论;,(3)在二向和三向等拉应力时,无论是塑性还是脆性都发生脆性破坏,故选用第一或第二强度理论;,7-8各种强度理论的应用,(1)一般脆性材料选用第一或第二强度理论;,(4)在二向和三向等压应力状态时,无论是塑性还是脆性材料都发生塑性破坏,故选用第三或第四强度理论.,2.强度计算的步骤,(1)外力分析:确定所需的外力值;,(2)内力分析:画内力图,确定可能的危险面;,(3)应力分析:画危险面应力分布图,确定危险点并画出单元体,求主应力;,(4)强度分析:选择适当的强度理论,计算相当应力,然后进行强度计算.,3.应用举例,F,解:危险点A的应力状态如图,例题直径为d=0.1m的圆杆受力如图,Me=7kNm,F=50kN,材料为铸铁,=40MPa,试用第一强度理论校核杆的强度.,故安全.,F,Me,Me,例题一蒸汽锅炉承受最大压强为p,圆筒部分的内径为D,厚度为d,且d远小于D.试用第四强度理论校核圆筒部分内壁的强度.已知p=3.6MPa,d=10mm,D=1m,=160
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合同范本汇编全册
- 企业战略管理的案例分析试题及答案
- 行政控制的基本原则试题及答案
- 行政管理学综合应用试题及答案
- 行政管理自考试题一览与答案总结
- 2025债务解决非诉讼性质的合同协议范本
- 2025二手房合同订立的程序是怎样的
- 2025公司员工秘密劳动合同模板
- 2025聚氨酯地坪涂料施工合同范本
- 2025中文版工程承包合同范本
- 健康主题班会 《如何正确与异性同学相处》班会课件
- 《反家庭暴力》课件
- 退租回复函范本
- 幼儿园孩子挑食培训
- 2024-2025学年初中八年级数学学期期末检测模拟卷(人教版)含答案
- 第22课 从局部抗战到全国抗战 说课稿-2023-2024学年高一上学期统编版(2019)必修中外历史纲要上
- 机器人技术在智能建造中的应用与发展现状
- 医学证据的临床转化
- 中考英语复习阅读理解-主旨大意题、推理判断题
- 分离工程知到智慧树章节测试课后答案2024年秋昆明理工大学
- 幼儿园观察记录书写培训
评论
0/150
提交评论