




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一.傅立叶分析基本原理,1.连续傅立叶级数(CFS)一个周期为2l的函数可展开成Fourier级数如下所示:式中:2.离散傅立叶级数(DFS)数字信号处理中,经常遇到的是离散的数列,且我们只能在正的时间段内对信号进行采样,因此上述连续形式需要改写成离散形式,如下:,式中:上式可改写为:式中:,从上面的式子我们可以看出,离散傅立叶级数将一个数字序列转化为一系列不同频率的正弦波的合成,通过这种分解,我们可以根据实际需要,利用滤波器设计,保留我们想要的频率的波而滤除不想要的波。3.离散傅立叶变换(DFT)3.1原理:应用欧拉公式,我们可以证明,离散形式的傅立叶级数可以写成如下所示的复数形式:式中,实际计算时,有:,3.2离散傅立叶变换MATLAB程序仿真基于复数形式DFT算法源程序如下:functionmagc=DFT(x,N,dt)c=zeros(1,N);w=zeros(1,N);s=0;fork=0:N-1form=0:N-1s=s+x(m+1)*exp(-1i*2*pi*k*m)/N);endc(k+1)=(1/N)*s;w(k+1)=(k/(dt*N);s=0;endmagc=abs(c)*2;plot(w,magc)end,dt=(1/500);N=500;t=(0:499)*dt;x=sin(2*pi*50*t)+0.8*sin(2*pi*100*t)+0.6*sin(2*pi*200*t);magc=DFT(x,N,dt)可得仿真图如下:,4.快速傅立叶变换(FFT)离散Fourier变换是计算机对信号分析的理论依据。然而,当数据采样点数很大(如N=10000),其计算量也逐渐增大,运算速度会很慢。所以,利用DFT系数的固有特性,可以对其改进,以减少计算量。4.1FFT基本原理(1)利用DFT系数的对称性和周期性,合并DFT运算中的某些项。(2)将长序列分解成短序列,从而减少其运算量。因合并与分解方法的不同产生了多种FFT算法。,4.2常见的FFT算法(1)基2-FFT算法:序列x(n)长度N为2的整数次方按抽取方法分为:时间抽取算法(DIT),频率抽取算法(DIF)(2)基4-FFT算法(3)混合基FFT算法:序列x(n)长度N可以分解为一些因子的乘积4.3MATLAB中主要的FFT的命令及仿真:(1)Y=fft(X,n):对一维输入信号X的前n个点进行FFT,结果以n维向量Y表示。一般情况n要取接近X长度的2的整数幂,这样有助于提高计算效率。eg:Fs=1000;T=1/Fs;L=1000;t=(0:L-1)*T;,x=sin(2*pi*200*t)+sin(2*pi*450*t);subplot(2,1,1)plot(Fs*t(1:50),x(1:50)title(SignalCorruptedwithZero-MeanRandomNoise)xlabel(time(milliseconds)NFFT=2nextpow2(L);Y=fft(x,NFFT)/L;f=Fs/2*linspace(0,1,NFFT/2+1);subplot(2,1,2)plot(f,2*abs(Y(1:NFFT/2+1)title(Single-SidedAmplitudeSpectrumofy(t)xlabel(Frequency(Hz)ylabel(|Y(f)|),(2)Y=fft2(X,m,n):对于二维输入信号X进行FFT,输出结果为其FFT的系数,以mn维矩阵Y表示。(3)fftw(planner,method):通过设定不同的method,在第二次调用fft命令时,可以大大缩短所使用的时间。eg:fftw(planner,estimate);tic;Y=fft(x,1000);toc;Elapsedtimeis0.054135se
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 红塔银行面试题目及答案
- 2025年陪诊师考试服务态度试题及答案
- 2025年东莞市人工智能训练师初赛竞赛练习题及答案
- (试题)社会救助公共基础知识题库及答案
- 施工现场应急预案方案
- 2025年新媒体运营师中级考试预测题及实战技巧解析
- 2025年护士招聘面试预测题及应对技巧
- 北京市门头沟区2023-2024学年九年级下学期初中学业水平考试(一模)化学试题及答案
- 桃花姬阿胶糕课件
- 桃江眼科知识培训班课件
- 财管10-16年历年真题
- 惠州卫生职业技术学院辅导员考试真题2022
- 2022年咖啡师资格证考试参考题库及答案
- GB/T 28288-2012足部防护足趾保护包头和防刺穿垫
- GB/T 1508-2002锰矿石全铁含量的测定重铬酸钾滴定法和邻菲啰啉分光光度法
- 行为金融学案例
- 万科集团财务管理制度手册207
- “李可中医药学术流派论治厥阴病”-课件
- 通用技术作品设计报告
- 锚杆支护技术规范正式版本
- 下一代互联网技术
评论
0/150
提交评论