




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
20.5.3,7.2估计量的优良性准则,在众多的估计量中选哪一个更好?选取的标准是什么?,如XU(0,),的矩法估计量为,,对于总体的一个参数,可用各种不同的方法去估计它,因此一个参数的估计量不唯一.,三个常用准则:无偏性、有效性、相合性.,极大似然估计量为,20.5.3,定义:设是未知参数的估计量,若,则称为的无偏估计.,S2是2的无偏估计,注意:,1.无偏性,20.5.3,思考:下列估计量是否为的无偏估计量?哪个更好?,2.有效性,20.5.3,可见,一个参数的无偏估计可以有很多.,无偏估计只能保证估计无系统误差:,希望的取值在及其附近越密集越好,,其方差应尽量小.,20.5.3,是未知参数的两个无偏估计量,若对的所有可能取值都有,称为的最小方差无偏估计量.,设是的无偏估计,如果对的任何一个无偏估计量都有,20.5.3,定义设是未知参数的估计量,若对任意的0,有,相合估计量的证明,是的相合估计量;S2和M2都是2的相合估计量.,3.相合性,则称为的相合估计量.,部分证明,20.5.3,证明无偏性判断有效性(一),和S2分别是和2的最小方差无偏估计,证明无偏性判断有效性(二),20.5.3,证明S2是2的无偏估计量,例1设总体的方差D(X)=20,则样本方差S2是2的无偏估计.,证,20.5.3,#,20.5.3,例2设总体XU0,0未知,(X1,X2,X3)是取自X的一个样本,试证,都是的无偏估计;,2)上述两个估计量中哪个的方差最小?,分析:要判断估计量是否是无偏估计量,需要计算统计量的数学期望.,20.5.3,证1)先求X与Y的概率密度函数,,已知分布函数,20.5.3,20.5.3,20.5.3,2),#,20.5.3,例3证明,是无偏估计量,是其中最有效估计量.,证,利用拉格朗日乘数法求条件极值,令,20.5.3,从联立方程组,解得,,20.5.3,即函数,的最小值点是,#,20.5.3,分析1)证明相合性往往用到切比雪夫不等式,其中涉及期望与方差;2)这里计算方差较难,可以先化为2分布,再利用卡方分布的性质计算.,例4设XN(0,2),证明是2的相合估计量.,20.5.3,证,20.5.3,由切比雪夫不等式,有,#,是2的相合估计量.,20.5.3,例5设总体X的数学期望存在,=E(X)的矩法估计量为:,它是E(X)的无偏、相合估计量.,证样本构成的随机变量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技师考试题库及答案详解
- 森林防灭火知识培训简报课件
- 森林防火知识培训课件
- 梭菌基础知识培训课件
- 2025年软件架构师面试攻略与热点预测题解析
- 《招标采购专业实务》模拟试题及答案
- 2025年药品安全操作规程题解
- 2025驾照检验考试试题及答案
- 2025年医生招聘考试题库及答案解析
- 2025年政府公务员考试模拟试题及标准答案详解
- 藏在生活中的数学:张景中教你学数学
- 第6章 Pandas基础与应用
- (通用版)代理合同书
- 工信部规《通信建设工程安全生产操作规范》
- 《安井食品销售人员绩效考核研究文献综述》2100字
- 山西大学第二聘期岗位设置与聘用实施方案
- GA/T 1237-2015人员基础信息采集设备通用技术规范
- 一带一路战略课件
- A-level项目介绍(课堂)课件
- 《C语言程序设计》一等奖说课稿
- 飞机制造技术-知识点汇总
评论
0/150
提交评论