




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
你听说过“勾股定理”吗?,如:勾三,股四,弦五,在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦。,18.1勾股定理,活动2、探索勾股定理,A、B、C的面积有什么关系?,SA+SB=SC,直角三角形三边有什么关系?,两直边的平方和等于斜边的平方,数学家毕达哥拉斯的故事,对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方,那么对于一般的直角三角形是否也有这样的性质呢?,请大家画一个任意的直角三角形,量一量,算一算。,命题:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2。,勾股定理:直角三角形两直角边的平方和等于斜边的平方a2+b2=c2,图2,图3,4,9,13,9,25,34,sA+sB=sC,两直角边的平方和等于斜边的平方,探究:你会求出图形的面积吗?,问题:你会用四个全等的直角三角形拼成哪些图形?,a,b,c,a,b,c,a,b,c,a,b,c,活动3、勾股定理的证明,勾股定理的证明方法很多,这里重点的介绍面积证法。,赵爽的“弦图”,早在公元3世纪,我国数学家赵爽就用左边的图形验证了“勾股定理”。在北京召开的2002年国际数学家大会(TCM2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.,思考:你能验证吗?,赵爽指出:按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实。加差实,亦成弦实。,赵爽弦图,朱实,朱实,朱实,C,朱实,C2=,(2,ab),+,(a-b)2,a2+b2,=,2,(4),(3),(2),(1),(a-b)2,(a-b)2,=,a2+b22ab=c22ab,b,C,a,想一想:这四个直角三角形还能怎样拼?,证法一,(a+b)2,=,a2+b2+2ab=c2+2ab,可得:a2+b2=c2,证法二,定理:经过证明被确认为正确的命题叫做定理。,勾股定理:如果直角三角形的两直角边长分别为、,斜边为,那么2+b2=c2。,如图,在RtABC中,C=90,则2+b2=c2,常用的勾股数:3,4,5;,5,12,13;,6,8,10;,7,24,25。,勾股定理的各种表达式:,在RTABC中,C=90,A、B、C的对边分别为a、b、c,则:,c2=a2+b2a2=c2-b2b2=c2-a2,c2=a2+b2,a2=c2-b2,b2=c2-a2,c=,a=,b=,“赵爽弦图表现了我国古代人队数学的钻研精神和聪明才智,它是我国古代数学的骄傲,因此,这个图案被选为2002年在北京召开的国际数学家大会的会徽。在西方,一般认为这个定理是毕达哥拉斯发现的,所以人们称这个定理为毕达哥拉斯定理。,竞技场!,1)在直角三角形中,两条直角边分别为a,b,斜边为c,则c2=_,a2+b2,2)在RTABC中C=90,若a=4,b=3,则c=_若c=13,b=5,则a=_若c=17,a=8,则b=_,5,12,15,一填空题:,活动4、基础巩固,(3)等边三角形的边长为12,则它的高为_,(4)在直角三角形中,如果有两边为3,4,那么另一边为_,5或,一个长方形的长是宽的2倍,其对角线的长是5,那么它的宽是()ABCD,二选择题:,如果直角三角形的一个锐角为30度,斜边长是2,那么直角三角形的其它两边长是()A1,B1,3C1,D1,5,如图,在RTABC中,C=90,B=45,AC=1,则AB=()A2,B1,C,D,A,C,B,A,B,C,(4)、放学以后,小红和小颖从学校分手,分别沿着东方向和南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖用20分钟到家,小红和小颖家的距离为()A、600米B、800米C、1000米D、不能确定,(5)、直角三角形两直角边分别为5厘米、12厘米,那么斜边上的高是()A、6厘米B、8厘米C、80/13厘米;D、60/13厘米;,C,D,探索勾股定理,1、想一想,我们有:,三、解决问题:,46,b=58,a=46,58,c,c2=a2+b2=462+582=5480,而742=5476,由勾股定理得:,在误差范围内,D,A,2、蚂蚁沿图中的折线从A点爬到D点,一共爬了多少厘米?(小方格的边长为1厘米),G,F,E,某楼房三楼失火,消防队员赶来救火,了解到每层楼高2米,消防队员取来7米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?,应用举例,解:如图,在RtABC中,C=90,AC=6米,BC=2米,则AB=6.3因为7米大于6.3米所以消防队能进入三楼灭火,巩固练习,1、如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯长度至少需米.,2、在三角形ABC中,C=90AC=4,BC=3求斜边AB边上的高CD。,3、如图:已知AD=14,AB=6,DC=8,BE=EC=y求AE,ED及y的长。,A,E,D,C,B,6,8,y,y,1)本节课我们学习了什么?,3)了解用面积法证明勾股
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健康防预知识培训总结课件
- 四川省绵阳市游仙区2025-2026学年八年级上学期开学历史试题(含答案)
- 俄国农奴制改革
- 伤寒护理课件
- 2025-2026学年辽宁省铁岭市高三物理第一学期期末考试试题
- 广东省汕尾市2025年物理高三上期末综合测试模拟试题
- 安徽省安庆市2025-2026学年物理高三上期末联考试题
- 金融总工委管理办法
- 企业疫情安全培训课程课件
- 淘宝代收评价管理办法
- 少儿跳绳培训班课程体系
- 教学质量分析与教学反思改进教学
- 碳纤维行业培训课件
- 2025至2030中国无针注射系统行业发展趋势分析与未来投资战略咨询研究报告
- 感染性休克护理
- 儿童过敏性紫癜饮食护理讲课件
- 肝脏的解剖和分段分叶
- 校外集体配餐管理制度
- 2025至2030年中国口腔喷雾剂行业市场竞争态势及发展前景研判报告
- 关于卫生院“十五五”发展规划(详细版)
- 送气工配送管理制度
评论
0/150
提交评论