




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二节,二、反函数的求导法则,三、复合函数求导法则,四、初等函数的求导问题,一、四则运算求导法则,函数的求导法则,第二章,解决求导问题的思路:,(构造性定义),求导法则,其他基本初等函数求导公式,证明中利用了两个重要极限,初等函数求导问题,本节内容,一、四则运算求导法则,定理1.,的和、,差、,积、,商(除分母,为0的点外)都在点x可导,且,下面分三部分加以证明,并同时给出相应的推论和,例题.,此法则可推广到任意有限项的情形.,证:设,则,故结论成立.,例如,(2),证:设,则有,故结论成立.,推论:,(C为常数),例1.,解:,(3),证:设,则有,故结论成立.,推论:,(C为常数),例2.求证,证:,类似可证:,二、反函数的求导法则,定理2.,y的某邻域内单调可导,例3.求反三角函数及指数函数的导数.,解:1)设,则,类似可求得,利用,则,2)设,则,小结:,在点x可导,三、复合函数求导法则,定理3.,在点,可导,复合函数,且,在点x可导,例如,关键:搞清复合函数结构,由外向内逐层求导.,推广:此法则可推广到多个中间变量的情形.,例4.求下列导数:,解:(1),(2),(3),说明:类似可得,例5.设,求,解:,思考:若,存在,如何求,的导数?,例6.设,解:,记,则,(反双曲正弦),其他反双曲函数的导数看参考书自推.,的反函数,双曲正弦,四、初等函数的求导问题,1.常数和基本初等函数的导数(P95),2.有限次四则运算的求导法则,(C为常数),3.复合函数求导法则,4.初等函数在定义区间内可导,由定义证,说明:最基本的公式,其他公式,用求导法则推出.,且导数仍为初等函数,例7.,求,解:,例8.,设,解:,求,先化简后求导,例9.,求,解:,关键:搞清复合函数结构由外向内逐层求导,例10.设,求,解:,内容小结,求导公式及求导法则(见P95P96),注意:1),2)搞清复合函数结构,由外向内逐层求导.,1.,思考与练习,对吗?,2.设,其中,在,因,故,正确解法:,时,下列做法是否正确?,在求,处连续,由于f(a)=0,故,3.求下列函数的导数,解:(1),(2),或,4.设,求,解:方法1利用导数定义.,方法2利用求导公式.,作业,P972(8);3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西物流职业技术学院才招聘262人考前自测高频考点模拟试题及参考答案详解
- 2025年中共大庆市委督查考评办公室所属事业单位公开选调工作人员5人模拟试卷及完整答案详解一套
- 2025年4月15日广西梧州市龙投人力资源有限公司招聘2人考前自测高频考点模拟试题附答案详解(完整版)
- 2025贵州金沙能源投资集团有限公司招聘经理层高级管理人员(财务总监)1人考前自测高频考点模拟试题附答案详解(完整版)
- 2025昆明市西山区海口街道招聘第二批辅助性岗位人员(6人)考前自测高频考点模拟试题及答案详解(有一套)
- 2025河南新乡市长垣市高章士学校招聘模拟试卷及完整答案详解1套
- 2025广东佛山市顺德区公办中小学招聘教师92人(编制)考前自测高频考点模拟试题及参考答案详解1套
- 2025年丹东银行春季招聘(柜员类)考前自测高频考点模拟试题及参考答案详解1套
- 2025湖州德清县教育局择优招聘浙江开放大学德清学院和职业类教师15人考前自测高频考点模拟试题及完整答案详解一套
- 2025湖南湘西凤凰县直机关事业单位公开选调工作人员40人模拟试卷及完整答案详解1套
- 2025年度社区工作者真题题库及答案
- 2025年9月 基孔肯雅热疫情防控工作的经验总结报告
- 2025年中国硅灰石超细粉市场调查研究报告
- 2025年幼儿园班级管理考试题及答案
- 鞘内药物输注技术
- 2025年物联网领域射频识别(RFID)技术创新与产业融合发展报告
- 2025年工会财务知识竞赛考试题库及参考答案
- 军队伤病员管理暂行办法
- 上海婚恋婚介培训课件
- 《中国高血压防治指南(2024年修订版)》解读课件
- 基层应急管理培训课件
评论
0/150
提交评论