



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
“胡不归模型”中考最值专题(一)【教学重难点】1“胡不归”之情景再现,模型识别2本质:“两定一动”型系数不为1的最值问题处理3三步处理:作角;作垂线;计算【模块一 模型识别】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径AB(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?”这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”法国著名数学家费马(Fermat,16011665),他在与数学家笛卡尔讨论光的折射现象时,偶然发现,如果把胡不归故事中的小伙子看作“光粒子”,然后,根据光的折射定律建立数学模型,就可以非常巧妙地解决“胡不归”问题费马解决“胡不归”问题的过程,告诉我们许多科学领域都是互相渗透、互为辅成的我们应该多多涉猎各方面知识,才能最大限度提升自我,走向成功高速公路ADBC沙 砾 地 带模型识别:问题本质:操作步骤:【模块二 几何类型选择题&B填】【例1】1(2012崇安模拟)如图,在平面直角坐标系中,AB=AC,A(0,),C(1,0),D为射线AO上一点,一动点P从A出发,运动路径为ADC,点P在AD上的运动速度是在CD上的3倍,要使整个过程运动时间最少,则点D的坐标应为( )A. B. C. D. 2(2015无锡二模)如图,菱形ABCD的对角线AC上有一动点P,BC=6,ABC=150,则PA+PB+PD的最小值为_【模块三 A20圆综合】【例2】(2015内江)如图,在中,CA=CE,CAE=30,O经过点C,且圆的直径AB在线段AE上(1) 试说明CE是O的切线;(2) 若中AE边上的高为h,试用含 h的代数式表示O的直径AB;(3) 设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求O的AB的长 【模块三 二次函数综合压轴】【例3】(2014成都改编)如图,已知抛物线(k为常数,k0)与x轴从左至右依次交于点A、B,与y轴交于点C,经过点B的直线与抛物线的另一个交点为D(1)若点D的横坐标为5,求抛物线的函数关系式;(2)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标为多少时,点M在整个运动过程中用时最少?【例4】(2015日照改编)如图,抛物线与直线交于A、B两点,交x轴于D、C两点,连接AC、BC,已知A(0,3),C(3,0)(1)抛物线的函数关系式为_,tanBAC=_;(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位的速度运动到E点,再沿线段EA以每秒个单位的速度运动到点A后停止,当点E的坐标是多少时,点M在整个运动过程中用时最少?【例5】(2016徐州改编)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图像经过点A(1,0),B(0,),C(2,0),其中对称轴与x轴交于点D(1) 求二次函数的表达式及其顶点坐标;(2) 若P为y轴上的一个动点,连接PD,则的最小值为_【例6】(2016随州改编)已知抛物线,与x轴从左至右依次相交于A、B两点,与y轴交于点C,经过点A的直线与抛物线的另一个交点为D(1)若点D的横坐标为2,则抛物线的函数关系式为_;(2)在(1)的条件下,设点E是线段AD上一点(不含端
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新零售背景下实体书店顾客体验升级研究报告
- 2025至2030年中国减肥药行业市场深度分析及未来发展趋势预测报告
- 解析卷北师大版9年级数学上册期末试题附答案详解【轻巧夺冠】
- 解析卷山东省乐陵市中考数学真题分类(位置与坐标)汇编章节测试试题(含答案解析)
- 解析卷人教版8年级数学下册《平行四边形》定向攻克试题(含详细解析)
- 2025版水利工程地质勘察合同范本
- 2025办公空间租赁合同(含装修及维护条款)
- 2025年度润滑油产品回收与再利用合同
- 2025年度专业图形设计电脑租赁合同范本
- 2025年度餐饮企业员工职业培训合同范本
- 肾脏先天畸形超声检查
- 混凝土防暴墙拆除方案(3篇)
- 精神病患者的康复护理计划
- 心理健康与寝室生活
- 语“你相遇”文启新程-2025年秋季高一语文开学第一课-2025-2026学年高中主题班会
- 个性化教育实施策略
- 2025年安全生产考试题库(安全知识)安全培训课程试题
- 试述ABC库存管理办法
- 13.2+磁感应强度+磁通量+课件-2024-2025学年高二上学期物理人教版(2019)必修第三册
- 急诊科护理月质量分析
- 糖尿病病人饮食健康宣教
评论
0/150
提交评论