已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.什么叫中心对称和中心对称图形?,回顾旧知,把一个图形绕着某一点旋转180,如果他能与另一个图形重合,那么就说这两个图形关于这点成中心对称。,如果一个图形绕着一点旋转180后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。,2.中心对称有何性质?,(2)关于中心对称图形的两个图形,对称点的连线都经过对称中心,并且被对称中心平分。,(1)关于中心对称图形的两个图形是全等形。,3.在下列图形中,是中心对称图形的是(),C,成中心对称的图形在坐标上有什么特点?,新课导入,(1,1),(3,3),(3,1),你能很快说出各点坐标吗?,【知识与能力】理解P与点P点关于原点对称时,它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P(-x,-y)的运用。,教学目标,【过程与方法】观察法始终贯穿整堂课,演示需要学生细心的观察,同时理解概念后要学会应用和练习,这两种方法是学好知识的必备,要有意识的使学生养成善于观察的习惯,培养学生观察和分析的能力。,【情感态度与价值观】经历对生活中中心对称图形的观察、讨论、实践操作,使学生感知数学美,培养学生学习数学的兴趣和热爱生活的情感。,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P(x,y)及其运用。运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题。,教学重难点,在直角坐标系中,已知A(4,0)、B(0,3)、C(2,1)、D(1,2),作出A、B、C、D点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?,A(4,0),B(0,3),C(2,1),D(1,2),A,(4,0),B,(0,3),C,(2,1),D,(1,2),两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P(x,y)。,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形。,解:点P(x,y)关于原点的对称点为P(-x,-y),因此,线段AB的两个端点A(0,-1),B(3,0)关于原点的对称点分别为A(1,0),B(-3,0)。连结AB。则就可得到与线段AB关于原点对称的线段AB。,已知ABC,利用关于原点对称的点的坐标的特点,作出ABC关于原点对称的图形。,解:点P(x,y)关于原点的对称点为P(-x,-y),因此ABC的三个顶点A(-4,1),B(-1,-1),C(-3,2)关于原点的对称点分别为A(4,-1),B(1,1),C(3,-2)。依次连结AB,BC,CA。则就可得到与ABC关于原点对称的线段ABC。,直线ab,垂足为O,点A与点A关于直线a对称,点A与点A关于直线b对称,点A与点A有怎样的对称关系?你能说明理由吗?,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),关于原点的对称点P(x,y),及其利用这些特点解决一些实际问题。,课堂小结,关于原点对称的点的坐标:,1.下列各点中哪两个点关于原点O对称?A(-5,0),B(0,2),C(2,-1),D(2,0),E(0,5),F(-2,1),G(-2,-1),C与F关于原点O对称,随堂练习,2.如图,直线AB与x轴、y轴分别相交于A、B两点,将直线AB绕点O顺时针旋转90得到直线A1B1。(1)在图中画出直线。(2)求出线段中点的反比例函数解析式。(3)是否存在另一条与直线AB平行的直线y=kx+b(我们发现互相平行的两条直线斜率k值相等)它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由。,解:(1)分别作出A、B两点绕点O顺时针旋转90得到的点(1,0),(2,0),连结,那么直线就是所求的。(2)的中点坐标是设所求的反比例函数为则,所求的反比例函数解析式为(3)存在。设:y=kx+b过点(0,1),(2,0),把线段作出与它关于原点对称的图形就是我们所求的直线根据点P(x,y)关于原点的对称点P(-x,-y)得:(0,1),(2,0)关于原点的对称点分别为(0,-1),(-2,0):y=kx+b:,3.直线AB与x轴、y轴分别相交于A、B两点,将直线AB绕点O顺时针旋转90得到直线A1B1(1)在图中画出直线A1B1(2)求出线段A1B1中点的反比例函数解析式(3)是否存在另一条与直线AB平行的直线y=kx+b,它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由,习
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46524-2025光伏储水式电热水器
- GB/T 25678-2025印刷机械卷筒纸平版商业轮转印刷机
- 2025年防城港辅警协警招聘考试备考题库及答案详解一套
- 2025年清远辅警招聘考试真题及答案详解(名师系列)
- 2025年郴州辅警招聘考试真题(含答案详解)
- 2025年芜湖辅警协警招聘考试真题附答案详解(研优卷)
- 2025年贵阳辅警招聘考试题库及完整答案详解一套
- 2025年贵港辅警协警招聘考试真题附答案详解(培优)
- 2025年茂名辅警招聘考试真题含答案详解(b卷)
- 2025年黔南布依族苗族自治州辅警招聘考试题库含答案详解(培优)
- 乌鲁木齐市辅警考试题库2025(附答案)
- 安全生产考核巡查办法全文
- 消防施工合同电子可打印范文(2024版)
- 上驱SQ610变频器参数设置调试故障代码资料
- 2024年度-表观遗传学(研究生课件)
- 数据安全防护体系构建
- 第十八章经皮吸收制剂
- 横钩、竖钩写法
- GB/T 18033-2000无缝铜水管和铜气管
- FZ/T 60039-2013膜结构用涂层织物剥离强力试验方法
- 认识人工智能 课件 粤教版(2019)高中信息技术必修1
评论
0/150
提交评论