


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
几何中最值问题专题复习教学设计 开江中学实验学校 刘佳莉教材分析:几何中的最值问题变幻无穷,教学中如何引导学生在复杂条件变化中发现解决问题的路径,核心问题是训练学生在题目中寻找不变的已知元素,从这些已知的不变元素,运用“两点间线段最短”、“垂线段最短”、“二次函数最值”等知识源,实现问题的转化与解决.教学目标:知识溯源,从知识转化角度,借助中考真题的讲解,引导学生掌握处理最值问题的基本知识源(见教学设计中的标题),明确解决最值问题的思考方向。重点知识与命题特点最值连续多年广泛出现于中考试题中,由冷点变为热点,求相关线段、线段之和差、面积等最大与最小值.此类问题涉及的知识要点有以下方面: 两点间线段最短;垂线段最短;三角形的三边关系; 二次函数的最值问题.命题特点侧重于在动态环境下对多个知识点的综合考查.核心思想方法由于这类问题目标不明确,具有很强的探索性,解题时需要运用动态思维、数形结合、模型思想、特殊与一般相结合、转化思想和化归思想、分类讨论思想、函数和方程思想、从变化中寻找不变性的数学思想方法、逻辑推理与合情猜想相结合等思想方法解这类试题关键是要结合题意,借助相关的概念、图形的性质,将最值问题化归与转化为相应的数学模型进行分析与突破。教学过程一、问题导入我们所学的知识体系中,有哪些与最大值或最小值有关联的知识?两点间线段最短;垂线段最短;三角形的三边关系; 二次函数的最值问题.师:我们把这些知识点称为求几何中最值的知识源.二、真题讲解真题示例11.(2016福建龙岩)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A1 B2 C.3 D4【题型特征】利用轴对称求最短路线问题【示范解读】此类利用轴对称求最短路线问题一般都以轴对称图形为题设背景,如圆、正方形、菱形、等腰梯形、平面直角坐标系等.首先根据题意画出草图,利用轴对称性找出对应线段之间的相等关系,从而把所求线段进行转化,画出取最小值时特殊位置,两条动线段的和的最小值问题,常见的是典型的是“小河”问题,关键是指出一条对称轴“河流”(如图1)三条动线段的和的最小值问题,常见的是典型的“牛喝水”问题关键是指出两条对称轴“反射镜面”(如图2),结合其他相关知识加以解决.A草地河流AAMN真题示例2(2016四川内江)如图1所示,已知点C(1,0),直线yx7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则CDE周长的最小值是_(图2)xyO(图1)CBAEDC1C2【解题策略】1.画图建模,画出取最小值时动点的位置,建立相关模型;2.学会转化,利用轴对称把线段之和转化在同一条直线上真题(组)示例3例3如图,在ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PEAB于E,PFAC于F,则EF的最小值为 .(图1)【题型特征】利用垂线段最短求线段最小值问题 1如图1 ,在矩形ABCD中 ,AB=10 , BC=5 若点M、N分别是线段ACAB上的两个动点 , 则BM+MN的最小值为( )A 10 B 8 C 5 D 6真题(组)示例41.(2012宁波)如图2,ABC中,AB=,D是线段BC上的一个动点,以AD为直径画O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为 .(图3)(图2)【示范解读】O的大小随着AD的变化而变化,在此变化过程中,圆周角BAC的度数始终保持不变,而线段EF即为O中60圆周角所对的弦,弦EF的大小随O直径变化的变化而变化,当圆O的直径最小时,60度圆心角所对的弦长最短,即转化为求AD的最小值,由垂线段最短得出当ADBC时,AD最短.【解题策略】1.观察发现,分析总结运动变化过程中的不变元素及内在联系,2.画图转化,根据内在联系转化相关线段,应用“垂线段最短” 求出相关线段的最小值.真题(组)示例51(2016江苏常州)如图6,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(图6)【题型特征】利用二次函数的性质求最值问题【解题策略】此类问题中,无法通过轴对称或画草图得出何时所求线段或面积的最值,可以通过设相应点的坐标,运用函数思想,建立函数模型,最终通过二次函数的最值原理求出相应的最值.1.树立坐标意识,通过坐标表示相关线段长度;2.运用函数思想,构建函数模型,通过二次函数的性质理求出相应的最值.三、专题总结几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1特殊位置与极端位置法;2几何定理(公理)法;3数形结合法等复习时既要注重对基本知识
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市师范大学附属中学2025届物理高二下期末综合测试试题含解析
- 深度解读教育创新银行的儿童财商教育体系
- 三湘名校教育联盟2025年高一物理第二学期期末预测试题含解析
- 教育政策与医疗科技的融合发展
- 多媒体技术在教育培训中的应用与创新
- 教育技术与职场培训促进知识互换的策略探讨
- 教育科技创新引领未来教育方向
- 智慧城市安防监控系统的科技前沿与挑战
- 教育与科技结合推动动物防疫知识传播
- 中职情绪调适教案课件
- 施工现场隐患图片识别合集
- 山西省建设工程计价依据
- 煤矿在用安全设备检测检验制度
- GB/T 24632.2-2009产品几何技术规范(GPS)圆度第2部分:规范操作集
- GB/T 20428-2006岩石平板
- GB/T 11363-1989钎焊接头强度试验方法
- 内调焦准距式望远系统光学设计2022年
- 核磁共振的发展史课件
- 切纸机安全操作规程标准范本
- 国家开放大学2022秋法理学形考1-4参考答案
- 医院管理学考试(复习题)
评论
0/150
提交评论